In-Silico Optimization of Macrolactin A from Sponge-Associated Bacteria and Its Derivatives as Eco-Friendly Antifoulants
DOI:
https://doi.org/10.35800/jip.v13i2.65278Keywords:
ecofriendly antifouling, in silico, macrolactin, molecular docking, sponge-associated bacteriaAbstract
Marine biofouling causes significant economic and environmental damage creating an urgent demand for eco-friendly antifoulants. This in silico study aimed to evaluate the antifouling efficacy and ecotoxicological profile of macrolactin A (1), previously isolated from Indonesian sponge-associated Bacillus spp., alongside its computationally generated derivatives (1a-1f, 2a–2k) using Biotransformer 3.0. Molecular docking was utilized to assess binding affinities against key protein targets—the bacterial BAM complex, GSK-3 , and acetylcholinesterase (AChE)—and used EPI Suite™ to predict environmental safety. All tested compounds exhibited robust binding affinities ( kcal/mol) against all targets likely binding to allosteric sites. ANOVA revealed significant differences ( ) in binding strength, with derivatives displaying a distinct preference for GSK-3 over AChE and BAM ( ). However, the broad-spectrum affinity across all three targets supports a potential multi-mechanism mode of action. Crucially, most derivatives showed low toxicity and bioaccumulation potential compared to commercial antifoulants such as Irgarol 1501, SeaNine 211, and Selektope®. Notably, analogues 1a-1c and 2e were predicted to be readily biodegradable. This study identified 1a–1c and 2e as leading candidates for eco-friendly antifoulants and provides a strong basis for future experimental development of novel, sustainable marine coating candidates.
Keywords: ecofriendly antifouling; in silico; macrolactin; molecular docking; sponge-associated bacteria
References
Armstrong, R. A. (2014, September 1). When to use the Bonferroni correction. Ophthalmic & Physiological Optics: The Journal of the British College of Ophthalmic Opticians (Optometrists), Vol. 34, pp. 502–508. https://doi.org/10.1111/opo.12131
Ayesu, E. K. (2023). Does shipping cause environmental emissions? Evidence from African countries. Transportation Research Interdisciplinary Perspectives, 21. https://doi.org/10.1016/j.trip.2023.100873
Balansa, W., Rieuwpassa, F. J., & Hanif, N. (2025). Harnessing Ecofriendly Antifouling of Agelasine Alkaloids. Kamiya Jaya Aquatic.
Balansa, W., Riyanti, Balansa, K. H., & Hanif, N. (2025). Harnessing the Ecofriendly Antifouling Potential of Agelasine Alkaloids Through MetaTox Analysis and Computational Studies. Tropical Journal of Natural Product Research, 9(1), 329–340. https://doi.org/10.26538/tjnpr/v9i1.42
Balansa, W., Riyanti, Manurung, U. N., Tomasoa, A. M., Hanif, N., Rieuwpassa, F. J., & Schäberle, T. F. (2024). Sponge-Based Ecofriendly Antifouling: Field Study on Nets, Molecular Docking with Agelasine Alkaloids. Tropical Journal of Natural Product Research, 8(1), 5913–5924. https://doi.org/10.26538/tjnpr/v8i1.29
Balansa, W., Riyanti, Patras, M. A., Balansa, K. H., Hanif, N., Rieuwpassa, F. J., … Schäberle, T. F. (2025). Harnessing the metabolites from the marine sponge Melophlus sarasinorum for the discovery of eco-friendly antifoulants. Biodiversitas, 26(4), 1590–1606. https://doi.org/10.13057/biodiv/d260411
Balansa, W., Riyanti, Rieuwpassa, F. J., & Hanif, N. (2025). Harnessing ecofriendly antifouling of Agelasine alkaloids. Kamija Aquatic.
Bannister, J., Sievers, M., Bush, F., & Bloecher, N. (2019). Biofouling in marine aquaculture: a review of recent research and developments. Biofouling, 35(6), 631–648. https://doi.org/10.1080/08927014.2019.1640214
Cai, Y., Apell, J. N., Pflug, N. C., McNeill, K., & Bollmann, U. E. (2021). Photochemical fate of medetomidine in coastal and marine environments. Water Research, 191, 116791. https://doi.org/https://doi.org/10.1016/j.watres.2020.116791
Card, M. L., Gomez-Alvarez, V., Lee, W.-H., Lynch, D. G., Orentas, N. S., Lee, M. T., … Boethling, R. S. (2017). History of EPI SuiteTM and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments. Environ. Sci.: Processes Impacts, 19(3), 203–212. https://doi.org/10.1039/C7EM00064B
Chadha, A., Padhi, S. K., Stella, S., Venkataraman, S., & Saravanan, T. (2024). Microbial alcohol dehydrogenases: recent developments and applications in asymmetric synthesis. Org. Biomol. Chem., 22(2), 228–251. https://doi.org/10.1039/D3OB01447A
Chen, Jiamin, Liu, T., Wei, M., Zhu, Z., Liu, W., & Zhang, Z. (2019). Macrolactin a is the key antibacterial substance of Bacillus amyloliquefaciens D2WM against the pathogen Dickeya chrysanthemi. European Journal of Plant Pathology, 155(2), 393–404. https://doi.org/10.1007/s10658-019-01774-3
Chen, Jipeng, Bai, W., Jian, R., Lin, Y., Zheng, X., Wei, F., … Xu, Y. (2024). Molecular structure design of polybenzoxazines with low surface energy and low modulus for marine antifouling application. Progress in Organic Coatings, 187, 108165. https://doi.org/https://doi.org/10.1016/j.porgcoat.2023.108165
Chen, Jipeng, Zhao, J., Lin, F., Zheng, X., Jian, R., Lin, Y., … Xu, Y. (2023). Polymerized tung oil toughened urushiol-based benzoxazine copper polymer coatings with excellent antifouling performances. Progress in Organic Coatings, 177, 107411. https://doi.org/https://doi.org/10.1016/j.porgcoat.2023.107411
Chen, L, & Qian, P. Y. (2017). The cardiac drug digoxin is a potent antifoulant against the barnacle Amphibalanus amphitrite. J Mar Sci Eng. 2017;5(4):46, 5(4), 46.
Chen, Lianguo, & Qian, P. Y. (2017). Review on molecular mechanisms of antifouling compounds: An update since 2012. Marine Drugs, 15(264), 1–20. https://doi.org/10.3390/md15090264
Coughtrie, M. W. H. (2016). Function and organization of the human cytosolic sulfotransferase (SULT) family. Chemico-Biological Interactions, 259, 2–7. https://doi.org/https://doi.org/10.1016/j.cbi.2016.05.005
Dallakyan, S., & Olson, A. J. (2015). Small-Molecule Library Screening by Docking with PyRx. In J. E. Hempel, C. H. Williams, & C. C. Hong (Eds.), Chemical Biology: Methods and Protocols (pp. 243–250). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-2269-7_19
Dixon-Clarke, S. E., Elkins, J. M., Cheng, S. W. G., Morin, G. B., & Bullock, A. N. (2015). Structures of the CDK12/CycK complex with AMP-PNP reveal a flexible C-terminal kinase extension important for ATP binding. Scientific Reports, 5. https://doi.org/10.1038/srep17122
Dobretsov, S., & Rittschof, D. (2023, July 1). “Omics” Techniques Used in Marine Biofouling Studies. International Journal of Molecular Sciences, Vol. 24. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijms241310518
Docampo-Palacios, M. L., Alvarez-Hernández, A., Adiji, O., Gamiotea-Turro, D., Valerino-Diaz, A. B., Viegas, L. P., … Dixon, R. A. (2020). Glucuronidation of Methylated Quercetin Derivatives: Chemical and Biochemical Approaches. Journal of Agricultural and Food Chemistry, 68(50), 14790–14807. https://doi.org/10.1021/acs.jafc.0c04500
Escher, B. I., & Schwarzenbach, R. P. (2002). Conflicting toxicological goals: Degradation versus bioaccumulation of organic compounds. Environmental Science & Technology, 36(16), 3505–3511.
Farkas, A., Degiuli, N., Martić, I., & Vujanović, M. (2021). Greenhouse gas emissions reduction potential by using antifouling coatings in a maritime transport industry. Journal of Cleaner Production, 295, 126428. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126428
Fiorucci, S., Carino, A., Baldoni, M., Santucci, L., Costanzi, E., Graziosi, L., … Biagioli, M. (2021, March 1). Bile Acid Signaling in Inflammatory Bowel Diseases. Digestive Diseases and Sciences, Vol. 66, pp. 674–693. Springer. https://doi.org/10.1007/s10620-020-06715-3
Gagan, J., & et al. (2012). UDP-Glucuronosyltransferases: A family of enzymes essential in drug metabolism and detoxification. Drug Metabolism and Disposition, 40(6), 1051–1065.
Georgiades, E., Scianni, C., Davidson, I., Tamburri, M. N., First, M. R., Ruiz, G., … Kluza, D. (2021). The Role of Vessel Biofouling in the Translocation of Marine Pathogens: Management Considerations and Challenges. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.660125
Graziani, E. I., Cane, D. E., Betlach, M. C., Kealey, J. T., & McDaniel, R. (1998). Macrolide biosynthesis: A single cytochrome P450, PicK, is responsible for the hydroxylations that generate methymycin, neomethymycin, and picromycin in Streptomyces venezuelae. Bioorganic & Medicinal Chemistry Letters, 8(22), 3117–3120. https://doi.org/https://doi.org/10.1016/S0960-894X(98)00553-8
Gu, Y., Li, H., Dong, H., Zeng, Y., Zhang, Z., Paterson, N. G., … Dong, C. (2016). Structural basis of outer membrane protein insertion by the BAM complex. Nature, 531(7592), 64–69. https://doi.org/10.1038/nature17199
Guglya, E. B., Belozerova, O. A., Shikov, A. E., Alferova, V. A., Romanenko, M. N., Chebotar, V. K., … Terekhov, S. S. (2025). Bacillus-Based Biocontrol Agents Mediate Pathogen Killing by Biodegradable Antimicrobials from Macrolactin Family. International Journal of Molecular Sciences, 26(22), 11167. https://doi.org/10.3390/ijms262211167
Gumbart, J. C., & et al. (2019). Molecular dynamics simulations of the bacterial outer membrane protein insertion machinery BAM complex. Journal of Biological Chemistry, 294(50), 19087–19097.
Hinonaung, J. S. H., Tinungki, Y. L., & Balansa, W. (2025). Structure-Based Discovery of Immunomodulators for Stunting Inspired by Caulerpin: A Rational Approach Targeting Immune Homeostasis. Tropical Journal of Natural Product Research, 9(9). https://doi.org/10.26538/tjnpr/v9i9.45
Jaramillo, M. O., & et al. (2021). Macrolactin A as a novel inhibitory agent for SARS-CoV-2 Mpro. Frontiers in Chemistry, 9, . [PMID: ] , 9(715568).
Järvinen, E., Deng, F., Kiander, W., Sinokki, A., Kidron, H., & Sjöstedt, N. (2022, January 13). The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Frontiers in Pharmacology, Vol. 12. Frontiers Media S.A. https://doi.org/10.3389/fphar.2021.802539
Kaur, H., Jakob, R. P., Marzinek, J. K., Green, R., Imai, Y., Bolla, J. R., … Hiller, S. (2021). The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature, 593(7857), 125–129. https://doi.org/10.1038/s41586-021-03455-w
Kim, J. A., Choi, S. S., Lim, J. K., & Kim, E. S. (2025, April 25). Unlocking marine treasures: isolation and mining strategies of natural products from sponge-associated bacteria. Natural Product Reports, Vol. 42, pp. 1195–1225. Royal Society of Chemistry. https://doi.org/10.1039/d5np00013k
Kim, T. H., & et al. (2014). Anti-settlement activity of marine natural products from a red algae, Laurencia undulata, against the barnacle Balanus amphitrite. Journal of Applied Phycology, 26(1), 503–511.
Lee, Y., Yoon, S. B., Hong, H., Kim, H. Y., Jung, D., Moon, B. S., … Cho, H. (2022). Discovery of GSK3β Inhibitors through In Silico Prediction-and-Experiment Cycling Strategy, and Biological Evaluation. Molecules, 27(12). https://doi.org/10.3390/molecules27123825
Luque, F. J., & Muñoz-Torrero, D. (2023). Acetylcholinesterase: A Versatile Template to Coin Potent Modulators of Multiple Therapeutic Targets. Accounts of Chemical Research. https://doi.org/10.1021/acs.accounts.3c00617
Ma, Z., Ajibade, A., & Zou, X. (2024). Docking strategies for predicting protein-ligand interactions and their application to structure-based drug design. Communications in Information and Systems, 24(3), 199–230. https://doi.org/10.4310/CIS.241021221101
Mondol, Mohamad Abdul Mojid, Tareq, F. S., Kim, J. H., Lee, M. A., Lee, H. S., Lee, J. S., … Shin, H. J. (2013, February). New antimicrobial compounds from a marine-derived Bacillus sp. Journal of Antibiotics, Vol. 66, pp. 89–95. https://doi.org/10.1038/ja.2012.102
Mondol, Muhammad Abdul Mojid, & Shin, H. J. (2014). Antibacterial and antiyeast compounds from marine-derived bacteria. Marine Drugs, 12(5), 2913–2921. https://doi.org/10.3390/md12052913
Nagao, T., Adachi, K., Sakai, M., Nishijima, M., & Sanoll, H. (2001). Novel Macrolactins as Antibiotic Lactones from a Marine Bacterium. The Journal of Antibiotics, 54(4), 333–339.
Norouzi, S., Nahmiach, N., Perez, G., Zhu, Y., Peslherbe, G. H., Muir, D. C. G., & Zhang, X. (2025). Molecular docking for screening chemicals of environmental health concern: insight from a case study on bisphenols. Environmental Science: Processes & Impacts. https://doi.org/10.1039/d5em00084j
Nyström, B., Becker-Van Slooten, K., Bérard, A., Grandjean, D., Druart, J.-C., & Leboulanger, C. (2002). Toxic effects of Irgarol 1051 on phytoplankton and macrophytes in Lake Geneva. Water Research, 36(8), 2020–2028. https://doi.org/https://doi.org/10.1016/S0043-1354(01)00404-3
Ohji, M., Harino, H., Hayashizaki, K., Yusoff, F. Md., & Inoue, K. (2023). Bioaccumulation of antifouling biocides in mangroves and seagrasses in coastal ecosystems. Journal of the Marine Biological Association of the United Kingdom, 103, e24. https://doi.org/DOI: 10.1017/S0025315423000024
Olick, D. (2023, October 30). Shipping industry could lose $10 billion a year battling climate change by 2050. Retrieved November 25, 2025, from CNBC website: https://www.cnbc.com/diana-olick/
Onuh, A. C., Manopaek, R., Vangnai, A. S., Tiyayon, P., & Vinayavekhin, N. (2025). Ralstonia solanacearum Secretions Induce Shifts in Macrolactin Composition and Reduction in Antimicrobial Activity of Bacillus amyloliquefaciens BNC5. Journal of Agricultural and Food Chemistry, 73(20), 12525–12536. https://doi.org/10.1021/acs.jafc.5c03489
Ortiz, A., & Sansinenea, E. (2020). Macrolactin Antibiotics: Amazing Natural Products. Mini-Reviews in Medicinal Chemistry, 20(7), 584–600. https://doi.org/10.2174/1389557519666191205124050
Pan, L. lu, Yang, Y., Hui, M., Wang, S., Li, C. yun, Zhang, H., … Zhong, D. fang. (2021). Sulfation predominates the pharmacokinetics, metabolism, and excretion of forsythin in humans: major enzymes and transporters identified. Acta Pharmacologica Sinica, 42(2), 311–322. https://doi.org/10.1038/s41401-020-0481-8
Puniya, B. L. (2025, September 1). Artificial-intelligence-driven Innovations in Mechanistic Computational Modeling and Digital Twins for Biomedical Applications. Journal of Molecular Biology, Vol. 437. Academic Press. https://doi.org/10.1016/j.jmb.2025.169181
Qian, P. Y., Chen, L., & Xu, Y. (2013). Mini-review: Molecular mechanisms of antifouling compounds. Biofouling, Vol. 29, pp. 381–400. Taylor and Francis Ltd. https://doi.org/10.1080/08927014.2013.776546
Qian, P.-Y., Xu, Y., & Fusetani, N. (2010). Natural products as antifouling compounds: recent progress and future perspectives. Biofouling, 26(2), 223–234. https://doi.org/10.1080/08927010903470815
Qiao, L., Dong, Y., Zhou, H., & Cui, H. (2023). Effect of Post-Polyketide Synthase Modification Groups on Property and Activity of Polyene Macrolides. https://doi.org/10.3390/antibiotics
Qing, F. D., Qiu, Y., Wang, W., Wang, X., Qang Ouyang, P., & Huan Ke, C. (2013). Antifouling activities of hymenialdisine and debromohymenialdisine from the sponge Axinella sp. International Biodeterioration & Biodegradation, 85, 359–364. https://doi.org/https://doi.org/10.1016/j.ibiod.2013.08.014
Rittschof, D. (2001). Natural antifoulants and coatings: Marine antifouling in an environmentally friendly way. Journal of Coatings Technology, 73(919), 75–81.
Riyanti, Marner, M., Hartwig, C., Patras, M. A., Wodi, S. I. M., Rieuwpassa, F. J., … Schäberle, T. F. (2020). Sustainable Low-Volume Analysis of Environmental Samples by Semi-Automated Prioritization of Extracts for Natural Product Research (SeaPEPR). Marine Drugs, 18(12). https://doi.org/10.3390/md18120649
Sathiyanarayanan, G., Saibaba, G., Kiran, G. S., Yang, Y.-H., & Selvin, J. (2017). Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Critical Reviews in Microbiology, 43(3), 294–312. https://doi.org/10.1080/1040841X.2016.1206060
Selim, M. S., Shenashen, M. A., El-Safty, S. A., Higazy, S. A., Selim, M. M., Isago, H., & Elmarakbi, A. (2017). Recent progress in marine foul-release polymeric nanocomposite coatings. Progress in Materials Science, 87, 1–32. https://doi.org/https://doi.org/10.1016/j.pmatsci.2017.02.001
Song, S., De Marco Muscat-Fenech, C., & Demirel, Y. K. (2021). Economic and environmental impacts of different antifouling strategies for fishing boats in Turkey. In: 2nd International Conference on Ship and Marine Technology. Retrieved from https://www.gmoshipmar.org/GMOSHIPMAR2021
Song, Y., Zhou, Y., Cong, M., Deng, S., Chen, Y., Pang, X., … Wang, J. (2024). New 24-Membered Macrolactines from an Arctic Bacterium Bacillus amyloliquefaciens SCSIO 41392 and Their Anti-Pathogenicity Evaluation. Marine Drugs, 22(11). https://doi.org/10.3390/md22110484
Sun, L., Van Loey, A., Buvé, C., & Michiels, C. W. (2023). Experimental Evolution Reveals a Novel Ene Reductase That Detoxifies α,β-Unsaturated Aldehydes in Listeria monocytogenes. Microbiology Spectrum, 11(3). https://doi.org/10.1128/spectrum.04877-22
Tornio, A., Filppula, A. M., Kailari, O., Neuvonen, M., Nyrönen, T. H., Tapaninen, T., … Backman, J. T. (2014). Glucuronidation Converts Clopidogrel to a Strong Time-Dependent Inhibitor of CYP2C8: A Phase II Metabolite as a Perpetrator of Drug–Drug Interactions. Clinical Pharmacology & Therapeutics, 96(4), 498–507. https://doi.org/https://doi.org/10.1038/clpt.2014.141
Vedaprakash, L., Senthilkumar, P., Inbakandan, D., & Venkatesan, R. (2022). Marine Biofouling and Corrosion on Long-Term Behavior of Marine Structures. In U. Kamachi Mudali, T. Subba Rao, S. Ningshen, R. G. Pillai, R. P. George, & T. M. Sridhar (Eds.), A Treatise on Corrosion Science, Engineering and Technology (pp. 447–466). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9302-1_24
Wang, K. L., Wu, Z. H., Wang, Y., Wang, C. Y., & Xu, Y. (2017, September 1). Mini-review: Antifouling natural products from marine microorganisms and their synthetic analogs. Marine Drugs, Vol. 15. MDPI AG. https://doi.org/10.3390/md15090266
Wishart, D. S., Tian, S., Allen, D., Oler, E., Peters, H., Lui, V. W., … Metz, T. O. (2022). BioTransformer 3.0 - a web server for accurately predicting metabolic transformation products. Nucleic Acids Research, 50(W1), W115–W123. https://doi.org/10.1093/nar/gkac313
Wu, T., Xiao, F., & Li, W. (2021, February 1). Macrolactins: biological activity and biosynthesis. Marine Life Science and Technology, Vol. 3, pp. 62–68. Springer. https://doi.org/10.1007/s42995-020-00068-6
Wu, W. Y., Dai, Y. C., Li, N. G., Dong, Z. X., Gu, T., Shi, Z. H., … Duan, J. A. (2017, June 28). Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of alzheimer’s disease. Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 32, pp. 572–587. Taylor and Francis Ltd. https://doi.org/10.1080/14756366.2016.1210139
Xu, Y., Song, Y., Ning, Y., Li, S., Qu, Y., Jiao, B., & Lu, X. (2024). Macrolactin XY, a Macrolactin Antibiotic from Marine-Derived Bacillus subtilis sp. 18. Marine Drugs, 22(8). https://doi.org/10.3390/md22080331
Yousef, A. N. A. (2023). Examining the effects of bio fouling on ships and how it contributes to the introduction of non-native species in newly discovered coastal areas in "Bio fouling on Ship Hulls and Its Ecological Ramification Abdel Nasser alsheikh Yousef. SSRN, 1–26. https://doi.org/https://dx.doi.org/10.2139/ssrn.4666557
Zieliński, M., Park, J., Sleno, B., & Berghuis, A. M. (2021). Structural and functional insights into esterase-mediated macrolide resistance. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-22016-3
Zuo, L., & et al. (2023). Macrolactin A is an inhibitor of protein biosynthesis in bacteria. Antimicrobial Agents and Chemotherapy, 67(11), e00305–e00323.
Downloads
Published
How to Cite
License
Copyright (c) 2025 Walter Balansa, Riyanti, Jelita Siska Herlina Hinonaung

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
COPYRIGHT
Authors who publish with this journal agree to the following terms:
Authors hold their copyright and grant this journal the privilege of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that permits others to impart the work with an acknowledgment of the work's origin and initial publication by this journal.
Authors can enter into separate or additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (for example, post it to an institutional repository or publish it in a book), with an acknowledgment of its underlying publication in this journal.
Authors are permitted and encouraged to post their work online (for example, in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).


































