In-Silico Optimization of Macrolactin A from Sponge-Associated Bacteria and Its Derivatives as Eco-Friendly Antifoulants

Authors

DOI:

https://doi.org/10.35800/jip.v13i2.65278

Keywords:

ecofriendly antifouling, in silico, macrolactin, molecular docking, sponge-associated bacteria

Abstract

Marine biofouling causes significant economic and environmental damage creating an urgent demand for eco-friendly antifoulants. This in silico study aimed to evaluate the antifouling efficacy and ecotoxicological profile of macrolactin A (1), previously isolated from Indonesian sponge-associated Bacillus spp., alongside its computationally generated derivatives (1a-1f, 2a–2k) using Biotransformer 3.0. Molecular docking was utilized to assess binding affinities against key protein targets—the bacterial BAM complex, GSK-3 , and acetylcholinesterase (AChE)—and used EPI Suite™ to predict environmental safety. All tested compounds exhibited robust binding affinities (  kcal/mol) against all targets likely binding to allosteric sites. ANOVA revealed significant differences ( ) in binding strength, with derivatives displaying a distinct preference for GSK-3  over AChE and BAM ( ). However, the broad-spectrum affinity across all three targets supports a potential multi-mechanism mode of action. Crucially, most derivatives showed low toxicity and bioaccumulation potential compared to commercial antifoulants such as Irgarol 1501, SeaNine 211, and Selektope®. Notably, analogues 1a-1c and 2e were predicted to be readily biodegradable. This study identified 1a–1c and 2e as leading candidates for eco-friendly antifoulants and provides a strong basis for future experimental development of novel, sustainable marine coating candidates.

Keywords: ecofriendly antifouling; in silico; macrolactin; molecular docking; sponge-associated bacteria

References

Armstrong, R. A. (2014, September 1). When to use the Bonferroni correction. Ophthalmic & Physiological Optics: The Journal of the British College of Ophthalmic Opticians (Optometrists), Vol. 34, pp. 502–508. https://doi.org/10.1111/opo.12131

Ayesu, E. K. (2023). Does shipping cause environmental emissions? Evidence from African countries. Transportation Research Interdisciplinary Perspectives, 21. https://doi.org/10.1016/j.trip.2023.100873

Balansa, W., Rieuwpassa, F. J., & Hanif, N. (2025). Harnessing Ecofriendly Antifouling of Agelasine Alkaloids. Kamiya Jaya Aquatic.

Balansa, W., Riyanti, Balansa, K. H., & Hanif, N. (2025). Harnessing the Ecofriendly Antifouling Potential of Agelasine Alkaloids Through MetaTox Analysis and Computational Studies. Tropical Journal of Natural Product Research, 9(1), 329–340. https://doi.org/10.26538/tjnpr/v9i1.42

Balansa, W., Riyanti, Manurung, U. N., Tomasoa, A. M., Hanif, N., Rieuwpassa, F. J., & Schäberle, T. F. (2024). Sponge-Based Ecofriendly Antifouling: Field Study on Nets, Molecular Docking with Agelasine Alkaloids. Tropical Journal of Natural Product Research, 8(1), 5913–5924. https://doi.org/10.26538/tjnpr/v8i1.29

Balansa, W., Riyanti, Patras, M. A., Balansa, K. H., Hanif, N., Rieuwpassa, F. J., … Schäberle, T. F. (2025). Harnessing the metabolites from the marine sponge Melophlus sarasinorum for the discovery of eco-friendly antifoulants. Biodiversitas, 26(4), 1590–1606. https://doi.org/10.13057/biodiv/d260411

Balansa, W., Riyanti, Rieuwpassa, F. J., & Hanif, N. (2025). Harnessing ecofriendly antifouling of Agelasine alkaloids. Kamija Aquatic.

Bannister, J., Sievers, M., Bush, F., & Bloecher, N. (2019). Biofouling in marine aquaculture: a review of recent research and developments. Biofouling, 35(6), 631–648. https://doi.org/10.1080/08927014.2019.1640214

Cai, Y., Apell, J. N., Pflug, N. C., McNeill, K., & Bollmann, U. E. (2021). Photochemical fate of medetomidine in coastal and marine environments. Water Research, 191, 116791. https://doi.org/https://doi.org/10.1016/j.watres.2020.116791

Card, M. L., Gomez-Alvarez, V., Lee, W.-H., Lynch, D. G., Orentas, N. S., Lee, M. T., … Boethling, R. S. (2017). History of EPI SuiteTM and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments. Environ. Sci.: Processes Impacts, 19(3), 203–212. https://doi.org/10.1039/C7EM00064B

Chadha, A., Padhi, S. K., Stella, S., Venkataraman, S., & Saravanan, T. (2024). Microbial alcohol dehydrogenases: recent developments and applications in asymmetric synthesis. Org. Biomol. Chem., 22(2), 228–251. https://doi.org/10.1039/D3OB01447A

Chen, Jiamin, Liu, T., Wei, M., Zhu, Z., Liu, W., & Zhang, Z. (2019). Macrolactin a is the key antibacterial substance of Bacillus amyloliquefaciens D2WM against the pathogen Dickeya chrysanthemi. European Journal of Plant Pathology, 155(2), 393–404. https://doi.org/10.1007/s10658-019-01774-3

Chen, Jipeng, Bai, W., Jian, R., Lin, Y., Zheng, X., Wei, F., … Xu, Y. (2024). Molecular structure design of polybenzoxazines with low surface energy and low modulus for marine antifouling application. Progress in Organic Coatings, 187, 108165. https://doi.org/https://doi.org/10.1016/j.porgcoat.2023.108165

Chen, Jipeng, Zhao, J., Lin, F., Zheng, X., Jian, R., Lin, Y., … Xu, Y. (2023). Polymerized tung oil toughened urushiol-based benzoxazine copper polymer coatings with excellent antifouling performances. Progress in Organic Coatings, 177, 107411. https://doi.org/https://doi.org/10.1016/j.porgcoat.2023.107411

Chen, L, & Qian, P. Y. (2017). The cardiac drug digoxin is a potent antifoulant against the barnacle Amphibalanus amphitrite. J Mar Sci Eng. 2017;5(4):46, 5(4), 46.

Chen, Lianguo, & Qian, P. Y. (2017). Review on molecular mechanisms of antifouling compounds: An update since 2012. Marine Drugs, 15(264), 1–20. https://doi.org/10.3390/md15090264

Coughtrie, M. W. H. (2016). Function and organization of the human cytosolic sulfotransferase (SULT) family. Chemico-Biological Interactions, 259, 2–7. https://doi.org/https://doi.org/10.1016/j.cbi.2016.05.005

Dallakyan, S., & Olson, A. J. (2015). Small-Molecule Library Screening by Docking with PyRx. In J. E. Hempel, C. H. Williams, & C. C. Hong (Eds.), Chemical Biology: Methods and Protocols (pp. 243–250). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-2269-7_19

Dixon-Clarke, S. E., Elkins, J. M., Cheng, S. W. G., Morin, G. B., & Bullock, A. N. (2015). Structures of the CDK12/CycK complex with AMP-PNP reveal a flexible C-terminal kinase extension important for ATP binding. Scientific Reports, 5. https://doi.org/10.1038/srep17122

Dobretsov, S., & Rittschof, D. (2023, July 1). “Omics” Techniques Used in Marine Biofouling Studies. International Journal of Molecular Sciences, Vol. 24. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijms241310518

Docampo-Palacios, M. L., Alvarez-Hernández, A., Adiji, O., Gamiotea-Turro, D., Valerino-Diaz, A. B., Viegas, L. P., … Dixon, R. A. (2020). Glucuronidation of Methylated Quercetin Derivatives: Chemical and Biochemical Approaches. Journal of Agricultural and Food Chemistry, 68(50), 14790–14807. https://doi.org/10.1021/acs.jafc.0c04500

Escher, B. I., & Schwarzenbach, R. P. (2002). Conflicting toxicological goals: Degradation versus bioaccumulation of organic compounds. Environmental Science & Technology, 36(16), 3505–3511.

Farkas, A., Degiuli, N., Martić, I., & Vujanović, M. (2021). Greenhouse gas emissions reduction potential by using antifouling coatings in a maritime transport industry. Journal of Cleaner Production, 295, 126428. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126428

Fiorucci, S., Carino, A., Baldoni, M., Santucci, L., Costanzi, E., Graziosi, L., … Biagioli, M. (2021, March 1). Bile Acid Signaling in Inflammatory Bowel Diseases. Digestive Diseases and Sciences, Vol. 66, pp. 674–693. Springer. https://doi.org/10.1007/s10620-020-06715-3

Gagan, J., & et al. (2012). UDP-Glucuronosyltransferases: A family of enzymes essential in drug metabolism and detoxification. Drug Metabolism and Disposition, 40(6), 1051–1065.

Georgiades, E., Scianni, C., Davidson, I., Tamburri, M. N., First, M. R., Ruiz, G., … Kluza, D. (2021). The Role of Vessel Biofouling in the Translocation of Marine Pathogens: Management Considerations and Challenges. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.660125

Graziani, E. I., Cane, D. E., Betlach, M. C., Kealey, J. T., & McDaniel, R. (1998). Macrolide biosynthesis: A single cytochrome P450, PicK, is responsible for the hydroxylations that generate methymycin, neomethymycin, and picromycin in Streptomyces venezuelae. Bioorganic & Medicinal Chemistry Letters, 8(22), 3117–3120. https://doi.org/https://doi.org/10.1016/S0960-894X(98)00553-8

Gu, Y., Li, H., Dong, H., Zeng, Y., Zhang, Z., Paterson, N. G., … Dong, C. (2016). Structural basis of outer membrane protein insertion by the BAM complex. Nature, 531(7592), 64–69. https://doi.org/10.1038/nature17199

Guglya, E. B., Belozerova, O. A., Shikov, A. E., Alferova, V. A., Romanenko, M. N., Chebotar, V. K., … Terekhov, S. S. (2025). Bacillus-Based Biocontrol Agents Mediate Pathogen Killing by Biodegradable Antimicrobials from Macrolactin Family. International Journal of Molecular Sciences, 26(22), 11167. https://doi.org/10.3390/ijms262211167

Gumbart, J. C., & et al. (2019). Molecular dynamics simulations of the bacterial outer membrane protein insertion machinery BAM complex. Journal of Biological Chemistry, 294(50), 19087–19097.

Hinonaung, J. S. H., Tinungki, Y. L., & Balansa, W. (2025). Structure-Based Discovery of Immunomodulators for Stunting Inspired by Caulerpin: A Rational Approach Targeting Immune Homeostasis. Tropical Journal of Natural Product Research, 9(9). https://doi.org/10.26538/tjnpr/v9i9.45

Jaramillo, M. O., & et al. (2021). Macrolactin A as a novel inhibitory agent for SARS-CoV-2 Mpro. Frontiers in Chemistry, 9, . [PMID: ] , 9(715568).

Järvinen, E., Deng, F., Kiander, W., Sinokki, A., Kidron, H., & Sjöstedt, N. (2022, January 13). The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Frontiers in Pharmacology, Vol. 12. Frontiers Media S.A. https://doi.org/10.3389/fphar.2021.802539

Kaur, H., Jakob, R. P., Marzinek, J. K., Green, R., Imai, Y., Bolla, J. R., … Hiller, S. (2021). The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature, 593(7857), 125–129. https://doi.org/10.1038/s41586-021-03455-w

Kim, J. A., Choi, S. S., Lim, J. K., & Kim, E. S. (2025, April 25). Unlocking marine treasures: isolation and mining strategies of natural products from sponge-associated bacteria. Natural Product Reports, Vol. 42, pp. 1195–1225. Royal Society of Chemistry. https://doi.org/10.1039/d5np00013k

Kim, T. H., & et al. (2014). Anti-settlement activity of marine natural products from a red algae, Laurencia undulata, against the barnacle Balanus amphitrite. Journal of Applied Phycology, 26(1), 503–511.

Lee, Y., Yoon, S. B., Hong, H., Kim, H. Y., Jung, D., Moon, B. S., … Cho, H. (2022). Discovery of GSK3β Inhibitors through In Silico Prediction-and-Experiment Cycling Strategy, and Biological Evaluation. Molecules, 27(12). https://doi.org/10.3390/molecules27123825

Luque, F. J., & Muñoz-Torrero, D. (2023). Acetylcholinesterase: A Versatile Template to Coin Potent Modulators of Multiple Therapeutic Targets. Accounts of Chemical Research. https://doi.org/10.1021/acs.accounts.3c00617

Ma, Z., Ajibade, A., & Zou, X. (2024). Docking strategies for predicting protein-ligand interactions and their application to structure-based drug design. Communications in Information and Systems, 24(3), 199–230. https://doi.org/10.4310/CIS.241021221101

Mondol, Mohamad Abdul Mojid, Tareq, F. S., Kim, J. H., Lee, M. A., Lee, H. S., Lee, J. S., … Shin, H. J. (2013, February). New antimicrobial compounds from a marine-derived Bacillus sp. Journal of Antibiotics, Vol. 66, pp. 89–95. https://doi.org/10.1038/ja.2012.102

Mondol, Muhammad Abdul Mojid, & Shin, H. J. (2014). Antibacterial and antiyeast compounds from marine-derived bacteria. Marine Drugs, 12(5), 2913–2921. https://doi.org/10.3390/md12052913

Nagao, T., Adachi, K., Sakai, M., Nishijima, M., & Sanoll, H. (2001). Novel Macrolactins as Antibiotic Lactones from a Marine Bacterium. The Journal of Antibiotics, 54(4), 333–339.

Norouzi, S., Nahmiach, N., Perez, G., Zhu, Y., Peslherbe, G. H., Muir, D. C. G., & Zhang, X. (2025). Molecular docking for screening chemicals of environmental health concern: insight from a case study on bisphenols. Environmental Science: Processes & Impacts. https://doi.org/10.1039/d5em00084j

Nyström, B., Becker-Van Slooten, K., Bérard, A., Grandjean, D., Druart, J.-C., & Leboulanger, C. (2002). Toxic effects of Irgarol 1051 on phytoplankton and macrophytes in Lake Geneva. Water Research, 36(8), 2020–2028. https://doi.org/https://doi.org/10.1016/S0043-1354(01)00404-3

Ohji, M., Harino, H., Hayashizaki, K., Yusoff, F. Md., & Inoue, K. (2023). Bioaccumulation of antifouling biocides in mangroves and seagrasses in coastal ecosystems. Journal of the Marine Biological Association of the United Kingdom, 103, e24. https://doi.org/DOI: 10.1017/S0025315423000024

Olick, D. (2023, October 30). Shipping industry could lose $10 billion a year battling climate change by 2050. Retrieved November 25, 2025, from CNBC website: https://www.cnbc.com/diana-olick/

Onuh, A. C., Manopaek, R., Vangnai, A. S., Tiyayon, P., & Vinayavekhin, N. (2025). Ralstonia solanacearum Secretions Induce Shifts in Macrolactin Composition and Reduction in Antimicrobial Activity of Bacillus amyloliquefaciens BNC5. Journal of Agricultural and Food Chemistry, 73(20), 12525–12536. https://doi.org/10.1021/acs.jafc.5c03489

Ortiz, A., & Sansinenea, E. (2020). Macrolactin Antibiotics: Amazing Natural Products. Mini-Reviews in Medicinal Chemistry, 20(7), 584–600. https://doi.org/10.2174/1389557519666191205124050

Pan, L. lu, Yang, Y., Hui, M., Wang, S., Li, C. yun, Zhang, H., … Zhong, D. fang. (2021). Sulfation predominates the pharmacokinetics, metabolism, and excretion of forsythin in humans: major enzymes and transporters identified. Acta Pharmacologica Sinica, 42(2), 311–322. https://doi.org/10.1038/s41401-020-0481-8

Puniya, B. L. (2025, September 1). Artificial-intelligence-driven Innovations in Mechanistic Computational Modeling and Digital Twins for Biomedical Applications. Journal of Molecular Biology, Vol. 437. Academic Press. https://doi.org/10.1016/j.jmb.2025.169181

Qian, P. Y., Chen, L., & Xu, Y. (2013). Mini-review: Molecular mechanisms of antifouling compounds. Biofouling, Vol. 29, pp. 381–400. Taylor and Francis Ltd. https://doi.org/10.1080/08927014.2013.776546

Qian, P.-Y., Xu, Y., & Fusetani, N. (2010). Natural products as antifouling compounds: recent progress and future perspectives. Biofouling, 26(2), 223–234. https://doi.org/10.1080/08927010903470815

Qiao, L., Dong, Y., Zhou, H., & Cui, H. (2023). Effect of Post-Polyketide Synthase Modification Groups on Property and Activity of Polyene Macrolides. https://doi.org/10.3390/antibiotics

Qing, F. D., Qiu, Y., Wang, W., Wang, X., Qang Ouyang, P., & Huan Ke, C. (2013). Antifouling activities of hymenialdisine and debromohymenialdisine from the sponge Axinella sp. International Biodeterioration & Biodegradation, 85, 359–364. https://doi.org/https://doi.org/10.1016/j.ibiod.2013.08.014

Rittschof, D. (2001). Natural antifoulants and coatings: Marine antifouling in an environmentally friendly way. Journal of Coatings Technology, 73(919), 75–81.

Riyanti, Marner, M., Hartwig, C., Patras, M. A., Wodi, S. I. M., Rieuwpassa, F. J., … Schäberle, T. F. (2020). Sustainable Low-Volume Analysis of Environmental Samples by Semi-Automated Prioritization of Extracts for Natural Product Research (SeaPEPR). Marine Drugs, 18(12). https://doi.org/10.3390/md18120649

Sathiyanarayanan, G., Saibaba, G., Kiran, G. S., Yang, Y.-H., & Selvin, J. (2017). Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Critical Reviews in Microbiology, 43(3), 294–312. https://doi.org/10.1080/1040841X.2016.1206060

Selim, M. S., Shenashen, M. A., El-Safty, S. A., Higazy, S. A., Selim, M. M., Isago, H., & Elmarakbi, A. (2017). Recent progress in marine foul-release polymeric nanocomposite coatings. Progress in Materials Science, 87, 1–32. https://doi.org/https://doi.org/10.1016/j.pmatsci.2017.02.001

Song, S., De Marco Muscat-Fenech, C., & Demirel, Y. K. (2021). Economic and environmental impacts of different antifouling strategies for fishing boats in Turkey. In: 2nd International Conference on Ship and Marine Technology. Retrieved from https://www.gmoshipmar.org/GMOSHIPMAR2021

Song, Y., Zhou, Y., Cong, M., Deng, S., Chen, Y., Pang, X., … Wang, J. (2024). New 24-Membered Macrolactines from an Arctic Bacterium Bacillus amyloliquefaciens SCSIO 41392 and Their Anti-Pathogenicity Evaluation. Marine Drugs, 22(11). https://doi.org/10.3390/md22110484

Sun, L., Van Loey, A., Buvé, C., & Michiels, C. W. (2023). Experimental Evolution Reveals a Novel Ene Reductase That Detoxifies α,β-Unsaturated Aldehydes in Listeria monocytogenes. Microbiology Spectrum, 11(3). https://doi.org/10.1128/spectrum.04877-22

Tornio, A., Filppula, A. M., Kailari, O., Neuvonen, M., Nyrönen, T. H., Tapaninen, T., … Backman, J. T. (2014). Glucuronidation Converts Clopidogrel to a Strong Time-Dependent Inhibitor of CYP2C8: A Phase II Metabolite as a Perpetrator of Drug–Drug Interactions. Clinical Pharmacology & Therapeutics, 96(4), 498–507. https://doi.org/https://doi.org/10.1038/clpt.2014.141

Vedaprakash, L., Senthilkumar, P., Inbakandan, D., & Venkatesan, R. (2022). Marine Biofouling and Corrosion on Long-Term Behavior of Marine Structures. In U. Kamachi Mudali, T. Subba Rao, S. Ningshen, R. G. Pillai, R. P. George, & T. M. Sridhar (Eds.), A Treatise on Corrosion Science, Engineering and Technology (pp. 447–466). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9302-1_24

Wang, K. L., Wu, Z. H., Wang, Y., Wang, C. Y., & Xu, Y. (2017, September 1). Mini-review: Antifouling natural products from marine microorganisms and their synthetic analogs. Marine Drugs, Vol. 15. MDPI AG. https://doi.org/10.3390/md15090266

Wishart, D. S., Tian, S., Allen, D., Oler, E., Peters, H., Lui, V. W., … Metz, T. O. (2022). BioTransformer 3.0 - a web server for accurately predicting metabolic transformation products. Nucleic Acids Research, 50(W1), W115–W123. https://doi.org/10.1093/nar/gkac313

Wu, T., Xiao, F., & Li, W. (2021, February 1). Macrolactins: biological activity and biosynthesis. Marine Life Science and Technology, Vol. 3, pp. 62–68. Springer. https://doi.org/10.1007/s42995-020-00068-6

Wu, W. Y., Dai, Y. C., Li, N. G., Dong, Z. X., Gu, T., Shi, Z. H., … Duan, J. A. (2017, June 28). Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of alzheimer’s disease. Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 32, pp. 572–587. Taylor and Francis Ltd. https://doi.org/10.1080/14756366.2016.1210139

Xu, Y., Song, Y., Ning, Y., Li, S., Qu, Y., Jiao, B., & Lu, X. (2024). Macrolactin XY, a Macrolactin Antibiotic from Marine-Derived Bacillus subtilis sp. 18. Marine Drugs, 22(8). https://doi.org/10.3390/md22080331

Yousef, A. N. A. (2023). Examining the effects of bio fouling on ships and how it contributes to the introduction of non-native species in newly discovered coastal areas in "Bio fouling on Ship Hulls and Its Ecological Ramification Abdel Nasser alsheikh Yousef. SSRN, 1–26. https://doi.org/https://dx.doi.org/10.2139/ssrn.4666557

Zieliński, M., Park, J., Sleno, B., & Berghuis, A. M. (2021). Structural and functional insights into esterase-mediated macrolide resistance. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-22016-3

Zuo, L., & et al. (2023). Macrolactin A is an inhibitor of protein biosynthesis in bacteria. Antimicrobial Agents and Chemotherapy, 67(11), e00305–e00323.

Downloads

Published

2025-12-27

How to Cite

Balansa, W., Riyanti, & Hinonaung, J. S. H. (2025). In-Silico Optimization of Macrolactin A from Sponge-Associated Bacteria and Its Derivatives as Eco-Friendly Antifoulants. Jurnal Ilmiah PLATAX, 13(2), 491–511. https://doi.org/10.35800/jip.v13i2.65278

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.