Antecedents of Intention to Adopt Mobile Health (mHealth) Application for Physicians

Authors

  • Lie Rebecca Yen Hwei Graduate School of Management, Universitas Pelita Harapan http://orcid.org/0000-0001-6098-1160
  • Mustika Ngada Lasiga Graduate School of Management, Universitas Pelita Harapan
  • Ferdi Antonio Assistant Professor of Graduate School of Management, Universitas Pelita Harapan
  • Freda Susana Halim Surgery Department, Faculty of Medicine, Universitas Pelita Harapan

DOI:

https://doi.org/10.35794/jmbi.v9i2.39016

Abstract

Abstract:  Continuing medical education (CME) is a process of getting accreditation for practicing healthcare, in which there is knowledge being “transferred†during the process. With the ongoing pandemic for the last two years, physical distancing made offline symposiums and workshops is practically impossible to hold; hence, necessitating the shift towards electronic-based CME (e-CME). However, there are certain problems associated with using e-CME. Therefore, this study aims to assess factors that may influence physicians' willingness to use mobile applications that provide e-CME in Indonesia.  There are 248 respondents for our study with the majority of them are general practitioners, age 21 – 30 years old. Our proposed model is able to explain 62.2% of the variance of perceived usefulness and perceived usefulness explains 54.8% of intention to adopt. Job relevance had the strongest total effects on perceived usefulness (β = 0.353, p < 0.001), followed by perceived ease of use (β = 0.299, p < 0.001). mHealth application that offers e-CME in Indonesia can be used to gain knowledge and assist physicians in daily practice extensively while the application developers may improve certain elements in the application to provide better user experience and safety.

Abstrak:  Continuing Medical Education (CME) adalah proses mendapatkan akreditasi untuk praktik kesehatan, di mana ada pengetahuan yang “ditransfer†selama proses tersebut. Dengan pandemi yang sedang berlangsung selama dua tahun terakhir, physical distancing membuat simposium dan lokakarya offline praktis tidak mungkin diadakan; Oleh karena itu, diperlukan pergeseran menuju CME berbasis elektronik (e-CME). Namun, ada masalah tertentu yang terkait dengan penggunaan e-CME. Oleh karena itu, penelitian ini bertujuan untuk mengkaji faktor-faktor yang dapat mempengaruhi kesediaan dokter untuk menggunakan aplikasi mobile yang menyediakan e-CME di Indonesia. Ada 248 responden untuk penelitian kami dengan mayoritas dari mereka adalah dokter umum, usia 21 – 30 tahun. Model yang kami usulkan mampu menjelaskan 62,2% varians kegunaan yang dirasakan dan kegunaan yang dirasakan menjelaskan 54,8% niat untuk mengadopsi. Relevansi pekerjaan memiliki total efek terkuat pada kegunaan yang dirasakan (β = 0,353, p <0,001), diikuti oleh persepsi kemudahan penggunaan (β = 0,299, p <0,001). Aplikasi mHealth yang menawarkan e-CME di Indonesia dapat digunakan untuk menambah pengetahuan dan membantu dokter dalam praktik sehari-hari secara luas sementara pengembang aplikasi dapat meningkatkan elemen tertentu dalam aplikasi untuk memberikan pengalaman dan keamanan pengguna yang lebih baik.

References

ACCME. ACCME Data Report Rising to the Challenge in Accredited Continuing Education – 2020 [Internet]. Accreditation Council for Continuing Medical Education. 2020. Available from: https://www.accme.org/sites/default/files/2021-06/902_20210615_2020 Data Report.pdf

Alas, R., Ãœbius, U., Lorents, P., & Matsak, E. (2017). Corporate Social Responsibility In European And Asian Countries. Jurnal Manajemen Bisnis Dan Inovasi (JMBI) UNSRAT Vol. 4 No. 1

ALOMEDIKA. ALOMEDIKA Khusus Untuk Dokter [Internet]. ALOMEDIKA. 2021. Available from: alomedika.com

An MH, You SC, Park RW, Lee S. Using an Extended Technology Acceptance Model to Understand the Factors Influencing Telehealth Utilization After Flattening the COVID-19 Curve in South Korea: Cross-sectional Survey Study. JMIR Med informatics [Internet]. 2021 Jan 8;9(1):e25435–e25435. Available from: https://pubmed.ncbi.nlm.nih.gov/33395397

Anderson EW, Sullivan MW. The Antecedents and Consequences of Customer Satisfaction for Firms. Mark Sci [Internet]. 1993 Sep 30;12(2):125–43. Available from: http://www.jstor.org/stable/184036

Arizton Advisory & Intelligence. Continuing Medical Education Market Size to Reach Revenues of USD 11.57 Billion by 2026 [Internet]. Arizton. 2021. Available from: https://www.prnewswire.com/news-releases/continuing-medical-education-market-size-to-reach-revenues-of-usd-11-57-billion-by-2026--arizton-301303897.html

Bangdiwala SI, Fonn S, Okoye O, Tollman S. Workforce Resources for Health in Developing Countries. Public Health Rev [Internet]. 2010;32(1):296–318. Available from: https://doi.org/10.1007/BF03391604

Bhattacherjee A. Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Q [Internet]. 2001 Sep 30;25(3):351–70. Available from: http://www.jstor.org/stable/3250921

Blagoveshchenskaya O, Ilina T, Zemtsov A. Methodological Approaches to Assessing the Investment Attractiveness of Telemedicine. SHS Web Conf [Internet]. 2020;80. Available from: https://doi.org/10.1051/shsconf/20208001005

Cervero RM, Gaines JK. The Impact of CME on Physician Performance and Patient Health Outcomes: An Updated Synthesis of Systematic Reviews. J Contin Educ Health Prof [Internet]. 2015;35(2). Available from: https://journals.lww.com/jcehp/Fulltext/2015/35020/The_Impact_of_CME_on_Physician_Performance_and.8.aspx

Dabholkar PA, Shepherd CD, Thorpe DI. A comprehensive framework for service quality: an investigation of critical conceptual and measurement issues through a longitudinal study. J Retail [Internet]. 2000;76(2):139–73. Available from: https://www.sciencedirect.com/science/article/pii/S0022435900000294

Damaske J, Walsh W, McKay J. CME in the Time of COVID-19: Educating Healthcare Professionals at the Point-of-care and Improving Performance Outcomes. J Eur C [Internet]. 2020 Oct 16;9(1):1832798. Available from: https://pubmed.ncbi.nlm.nih.gov/33224626

Davis D. Does CME Work? An Analysis of the Effect of Educational Activities on Physician Performance or Health Care Outcomes. Int J Psychiatry Med [Internet]. 1998 Mar 1;28(1):21–39. Available from: https://doi.org/10.2190/UA3R-JX9W-MHR5-RC81

Davis DA, Thomson MA, Oxman AD, Haynes RB. Evidence for the Effectiveness of CME: A Review of 50 Randomized Controlled Trials. JAMA [Internet]. 1992 Sep 2;268(9):1111–7. Available from: https://doi.org/10.1001/jama.1992.03490090053014

Davis FD. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q [Internet]. 1989 Sep 30;13(3):319–40. Available from: http://www.jstor.org/stable/249008

Deloitte Indonesia. 21st Century Health Care Challenges: A Connected Health Approach. Deloitte Konsultan Indonesia. 2019. p. 1–114.

Djalante R, Lassa J, Setiamarga D, Sudjatma A, Indrawan M, Haryanto B, Mahfud C, Sinapoy MS, Djalante S, Rafliana I, Gunawan LA, Surtiari GAK, Warsilah H. Review and analysis of current responses to COVID-19 in Indonesia: Period of January to March 2020. Prog Disaster Sci [Internet]. 2020;6:100091. Available from: https://www.sciencedirect.com/science/article/pii/S2590061720300284

Fishbein M, Ajzen I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Reading: Addison-Wesley; 1975. 302 p.

Gagnon MP, Duplantie J, Fortin JP, Landry R. Implementing telehealth to support medical practice in rural/remote regions: What are the conditions for success? Implement Sci. 2006;1(1).

Gagnon M-P, Godin G, Gagné C, Fortin J-P, Lamothe L, Reinharz D, Cloutier A. An adaptation of the theory of interpersonal behaviour to the study of telemedicine adoption by physicians. Int J Med Inform [Internet]. 2003;71(2):103–15. Available from: https://www.sciencedirect.com/science/article/pii/S1386505603000947

Gravas S, Ahmad M, Hernández-Porras A, Furriel F, Alvarez-Maestro M, Kumar A, Lee K-S, Azodoh E, Mburugu P, Sanchez-Salas R, Bolton D, Gomez R, Klotz L, Kulkarni S, Tanguay S, Elliott S, de la Rosette J, Directors O of E and SIUB of. Impact of COVID-19 on medical education: introducing homo digitalis. World J Urol [Internet]. 2020/08/29. 2021 Jun;39(6):1997–2003. Available from: https://pubmed.ncbi.nlm.nih.gov/32860535

Hadadgar A, Changiz T, Dehghani Z, Backheden M, Mirshahzadeh N, Zary N, Masiello I. A Theory-Based Study of Factors Explaining General Practitioners ’ Intention to Use and Participation in. J Contin Educ Health Prof. 2016;36(4):290–4.

Hashim H. Application of Technology in the Digital Era Education. Int J Res Couns Educ. 2018;2(1):1–5.

Haug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, Pinior B, Thurner S, Klimek P. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat Hum Behav [Internet]. 2020;4(12):1303–12. Available from: https://doi.org/10.1038/s41562-020-01009-0

Honda A, Krucien N, Ryan M, Diouf ISN, Salla M, Nagai M, Fujita N. For more than money: willingness of health professionals to stay in remote Senegal. Hum Resour Health [Internet]. 2019 Apr 25;17(1):28. Available from: https://pubmed.ncbi.nlm.nih.gov/31023372

Hugenholtz NIR, de Croon EM, Smits PB, van Dijk FJH, Nieuwenhuijsen K. Effectiveness of e-learning in continuing medical education for occupational physicians. Occup Med (Lond) [Internet]. 2008/05/20. 2008 Aug;58(5):370–2. Available from: https://pubmed.ncbi.nlm.nih.gov/18495676

Ismail II, Abdelkarim A, Al-Hashel JY. Physicians’ attitude towards webinars and online education amid COVID-19 pandemic: When less is more. PLoS One [Internet]. 2021 Apr 16;16(4):e0250241. Available from: https://doi.org/10.1371/journal.pone.0250241

Jones CL, Jensen JD, Scherr CL, Brown NR, Christy K, Weaver J. The Health Belief Model as an explanatory framework in communication research: exploring parallel, serial, and moderated mediation. Health Commun [Internet]. 2014/07/10. 2015;30(6):566–76. Available from: https://pubmed.ncbi.nlm.nih.gov/25010519

Jumreornvong O, Yang E, Race J, Appel J. Telemedicine and Medical Education in the Age of COVID-19. Acad Med. 2020;95(12):1838–43.

Karamoy, H., & Tulung, J. E. (2020). The Effect of Banking Risk on Indonesian Regional Development Bank. Banks and Bank Systems, 15(2), 130-137

Karamoy, H., & Tulung, J. E. (2020). The Effect of Financial Performance and Corporate Governance To Stock Price In Non-Bank Financial Industry. Corporate Ownership & Control, 17(2), 97-103.

Kamal SA, Hussain S, Shafiq M, Jahanzaib M. Investigating the Adoption of Telemedicine Services : An Empirical Study of Factors Influencing Physicians ’ Perspective in Pakistan. Nucl. 2018;3(3):153–63.

Koo C, Wati Y, Park K, Lim MK. Website Quality , Expectation , Confirmation , and End User Satisfaction : The Knowledge-Intensive Website of the Korean National Cancer Information Center. J Med Internet Res. 2011;13(4):1–14.

Lee L, Maher M Lou. Factors Affecting the Initial Engagement of Older Adults in the Use of Interactive Technology. Int J Environ Res Public Health [Internet]. 2021 Mar 11;18(6):2847. Available from: https://pubmed.ncbi.nlm.nih.gov/33799568

Madede T, Sidat M, McAuliffe E, Patricio SR, Uduma O, Galligan M, Bradley S, Cambe I. The impact of a supportive supervision intervention on health workers in Niassa, Mozambique: a cluster-controlled trial. Hum Resour Health [Internet]. 2017 Sep 2;15(1):58. Available from: https://pubmed.ncbi.nlm.nih.gov/28865466

Narayan KMV, Curran JW, Foege WH. The COVID-19 Pandemic as an Opportunity to Ensure a More Successful Future for Science and Public Health. JAMA [Internet]. 2021 Feb 9;325(6):525. Available from: https://jamanetwork.com/journals/jama/fullarticle/2776207

Nylenna M, Aasland OG. Doctors’ learning habits: CME activities among Norwegian physicians over the last decade. BMC Med Educ [Internet]. 2007;7(1):10. Available from: https://doi.org/10.1186/1472-6920-7-10

Octavius GS, Antonio F. Antecedents of Intention to Adopt Mobile Health (mHealth) Application and Its Impact on Intention to Recommend: An Evidence from Indonesian Customers. Colloc J, editor. Int J Telemed Appl [Internet]. 2021;2021:6698627. Available from: https://doi.org/10.1155/2021/6698627

Oliver RL. A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. J Mark Res [Internet]. 1980 Nov 1;17(4):460–9. Available from: https://doi.org/10.1177/002224378001700405

Oliver RL. Cognitive, Affective, and Attribute Bases of the Satisfaction Response. J Consum Res [Internet]. 1993 Dec 1;20(3):418–30. Available from: https://doi.org/10.1086/209358

Patterson PG, Johnson LW, Spreng RA. Modeling the determinants of customer satisfaction for business-to-business professional services. J Acad Mark Sci [Internet]. 1997;25(1):4. Available from: https://doi.org/10.1007/BF02894505

Shachar C, Engel J, Elwyn G. Implications for Telehealth in a Postpandemic Future: Regulatory and Privacy Issues. J Am Med Assoc. 2020;323(23):2375–6.

Shiferaw KB, Mengiste SA, Gullslett MK, Zeleke AA, Tilahun B, Tebeje T, Wondimu R, Desalegn S, Mehari EA. Healthcare providers’ acceptance of telemedicine and preference of modalities during COVID-19 pandemics in a low-resource setting: An extended UTAUT model. PLoS One [Internet]. 2021 Apr 22;16(4):e0250220. Available from: https://doi.org/10.1371/journal.pone.0250220

Taherdoost H. ScienceDirect ScienceDirect A review of technology acceptance and adoption models and theories A review of technology acceptance and adoption models Costing models for capacity optimization Trade-off between used capacity operational efficiency. Procedia Manuf [Internet]. 2018;22:960–7. Available from: https://doi.org/10.1016/j.promfg.2018.03.137

Thi Nguyen VA, Könings KD, Scherpbier AJJA, van Merriënboer JJG. Attracting and retaining physicians in less attractive specialties: the role of continuing medical education. Hum Resour Health [Internet]. 2021 May 19;19(1):69. Available from: https://pubmed.ncbi.nlm.nih.gov/34011364

Tingchi Liu M, Brock JL, Cheng Shi G, Chu R, Tseng T. Perceived benefits, perceived risk, and trust. Melewar TC, Alwi S, editors. Asia Pacific J Mark Logist [Internet]. 2013 Jan 1;25(2):225–48. Available from: https://doi.org/10.1108/13555851311314031

Tse DK, Wilton PC. Models of Consumer Satisfaction Formation: An Extension. J Mark Res [Internet]. 1988 Sep 30;25(2):204–12. Available from: http://www.jstor.org/stable/3172652

Venkatesh V, Davis FD. A Model of the Antecedents of Perceived Ease of Use: Development and Test. Decis Sci [Internet]. 1996 Sep;27(3):451–81. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1540-5915.1996.tb00860.x

Venkatesh V, Morris MG, Davis GB, Davis FD. User Acceptance of Information Technology: Toward a Unified View. MIS Q [Internet]. 2003 Sep 30;27(3):425–78. Available from: http://www.jstor.org/stable/30036540

Venkatesh; Viaswanath, Davis; Fred D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manage Sci [Internet]. 2000;46(2):186–204. Available from: https://www.jstor.org/stable/pdf/2634758.pdf

Waller M, Stotler C. Telemedicine: a Primer. Curr Allergy Asthma Rep [Internet]. 2018;18(10):54. Available from: https://doi.org/10.1007/s11882-018-0808-4

Wang F. Continuing Medical Education via Telemedicine and Sustainable Improvements to Health. Int J Telemed Appl. 2016;2016.

Downloads

Published

2022-08-06

How to Cite

Hwei, L. R. Y., Lasiga, M. N., Antonio, F., & Halim, F. S. (2022). Antecedents of Intention to Adopt Mobile Health (mHealth) Application for Physicians. JMBI UNSRAT (Jurnal Ilmiah Manajemen Bisnis Dan Inovasi Universitas Sam Ratulangi)., 9(2). https://doi.org/10.35794/jmbi.v9i2.39016