PENGGUNAAN INDIKATOR ANALISA TEKNIKAL PADA PASAR SAHAM DI INDONESIA
Abstract
Penelitian ini menggunakan indikator Moving Averages, Relative Strength Indeks, Stochastic Oscillator, Parabolic Stop and Reverse, Moving Average Convergence Divergence, dan Rate of Change untuk menyelidiki kegunaan pendekatan Analisa Teknikal di pasar modal Indonesia. Indikator analisa teknikal diterapkan pada tiga indeks yaitu Indeks Harga Saham Gabungan, Indeks Sri Kehati, dan LQ45 selama periode 30 April 2010 sampai dengan 30 April 2021. Indikator analisa tekniknal yang paling baik dalam strategi trading adalah SMA 3 dari Stochastic-14 yang dapat menghasilkan return tahunan melebihi indeks sebesar 13.239% untuk IHSG, 25.043% untuk SRI-KEHATI, dan 20.664% untuk LQ45. Hasil dari analisa robustness menunjukkan bahwa indikator analisa teknik lebih menguntungkan untuk sub periode 2 (1 November 2015 s/d 30 April 2021) daripada sub periode 1 (30 April 2010 s/d 31 Oktober 2021).
References
Cheung, W., Lam, K. S., & Yeung, H. (2011). Intertemporal profitability and the stability of
technical analysis: evidences from the Hong Kong stock exchange. Applied
Economics, 43(15), 1945-1963. doi: 10.1080/00036840902817805
Cohen, G., & Cabiri, E. (2015). Can technical oscillators outperform the buy and hold strategy? Applied Economics.
Fifield, S. G., Power, D. M., & Donald Sinclair, C. (2005). An analysis of trading strategies in
eleven European stock markets. The European Journal of Finance, 11(6), 531-548.
doi: 10.1080/1351847042000304099
Han, Y., Yang, K., & Zhou, G. (2013). A New Anomaly: The Cross-Sectional Profitability of
Technical Analysis. Journal of Financial and Quantitative Analysis, 48(5), 1433-1461.
doi:10.1017/S0022109013000586
Kolková, A., (2017). Entrepreneurship on the financial markets based on the selected indicator
technical analysis. Innovation Management, Entrepreneurship and Sustainability (IMES
, 426-435. Retrieved 2 28, 2021, from https://www.ceeol.com/search/chapter
detail?id=544901
Malhotra, N., Tandon, K., & Tandon, D. (2015). Testing the Empirics of Weak Form of Efficient Market Hypothesis: Evidence from Asia-Pacific Markets. The IUP Journal of Applied Finance, 21(4), 18. Retrieved 2 28, 2021, from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2706331
Metghalchi, M., Kagochi, J., & Hayes, L. (2021). A technical approach to equity investing in South Africa: A tale of two indexes. Cogent Economics & Finance. doi: 10.1080/23322039.2020.1869374
Mutmainah, M., & Sulasmiyati, S. (2017). Analisis Teknikal Indikator Stochastic Oscillator
Dalam Menentukan Sinyal Beli Dan Sinyal Jual Saham (Studi Pada Sub Sektor Konstruksi
Dan Bangunan Di Bursa Efek Indonesia Periode 2014-2016). Jurnal Administrasi
Bisnis, 49(1), 1-8.
O'Sullivan, P. (2018). The Capital Asset Pricing Model and the Efficient Markets Hypothesis: The Compelling Fairy Tale of Contemporary Financial Economics. International Journal of Political Economy, 225-252.
Suleman, M. T., Hamid, K., Shah, S. Z., & Akkash, R. S. (2010). Testing the Weak Form of Efficient Market Hypothesis: Empirical Evidence from Asia-Pacific Markets. Social Science Research Network. Retrieved 2 28, 2021, from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2912908
Teixeira, L. A., Oliveira, A. L. I. (2010). A method for automatic stock trading combining technical
analysis and nearest neighbor classification, Expert Systems with Application, 37 Issue
(10), 6885-6890. doi: 10.1016/j.eswa.2010.03.033.
Ye, F., Zhang, L., Zhang, D., Fujita, H., & Gong, Z. (2016). A novel forecasting method based on
multi-order fuzzy time series and technical analysis. Information Sciences, 367, 41-57.
doi:10.1016/j.ins.2016.05.038