Synthesis and Characterization of Hydroxyapatite from Polymesoda placans Shell using Wet Precipitation Method

Authors

  • Charlena Department of Chemistry Faculty of Mathematics and Natural Science IPB University Bogor
  • Irma Herawati Suparto Halal Science Center, IPB University Bogor Tropical Biopharmaca Research Center, IPB University Bogor
  • Daniel Putra Oktavianus Laia Department of Chemistry Faculty of Mathematics and Natural Science IPB University Bogor

DOI:

https://doi.org/10.35799/jbl.v13i1.47454

Keywords:

Polymesoda placans shell, hydroxyapatite, wet precipitation

Abstract

Hydroxyapatite (HAp) is a bioceramic material that has chemical components similar to bone and teeth. Further development and exploration of calcium sources continued to be done to synthesize HAp. The purpose of this research was to synthesize HAp from the shell of Polymesoda placans using the wet precipitation method. The synthesis used in this study was by reacting calsium hydroxide from the shells and diammonium hydrogen phosphate as a phosphate precursor with the sintering temperatures of 600, 800, 1000, and 1100 oC and pH 9, 10 dan 11. Based on the X-ray diffraction spectrum, the best sintering temperature was 1000 oC with pH of 10-11 because it revealed the highest crystallinity (90.1 %). Functional groups analyzed by Fourier transform infrared showed that there were PO­43-, OH- , and CO32- groups in the HAp. Scanning electron microscope analysis showed uniform granule particles with particle sizes of 0.3-1.6 µm.

References

Abidi SSA, Murtaza Q. (2013). Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction. J Mater Sci Technol, 1-4. Doi:10.1016/j.jmst.2013.10.1016.

Balamurugun A, Michel J, Faure J, Benhayaoune H, Worthan L, Sockalingum G, Banchet V, Bouthors S, Laurent-maquin D, Balossier G. (2006). Synthesis and structural analysis of sol gel derived stoichiometric monophasic hydroxyapatite. Ceram Silikaty, 50(1): 27-31.

Charlena, Suparto IH, Putri DK. (2015). Synthesis of hydroxyapatite from rice fields snail shell (Bellamya javanica) through wet methods and pore modification using chitosan. Procedia Chemistry. 17: 27-35. Doi:10.1016/j.proche.2015.12.120.

Dahlan K. (2013). Potensi kerang ranga sebagai sumber kalsium dalam sintesis biomaterial subtitusi tulang. Prosiding Semirata FMIPA Universitas Lampung 2013. hal: 147-151.

Danoux CB, Barbieri D, Yuan H, de Bruijn JD, van Blitterswijk CA, et al. (2014). In vitro and vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter. 4: e27664. Doi: 10.4161/biom.27664.

Gomes JF, Granadeiro CC, Silva MA, Hoyos M, Silva R, Vieira T. (2008). An investigationof the synthesis parameters of the reaction of hydroxyapatite precipitation in aquaeous media. IJCRE. 103(6): 1-15.

Hadiko G, Han YS, Fuji M, Takahash M. (2005). Synthesis of hollow calcium carbonate particle by the buble templating method. Material Letters. 19-20(59):541-548.

Han YS, Hadiko G, Fuji M, Takahash M. (2006). Factors affecting the phase and morphology of CaCO3 prepared by a bubbling method. Journal of The Euroupean Ceramic Society. 4-5(26):843-847.

Handayani IS. (2013). Sintesis hidroksiapatit dari cangkang kerang hijau dengan metode double stirring simultan [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Hardiyanti. (2013). Sintesis dan karakterisasi β-Tricalsium phosphate dari cangkang telur ayam dengan variasi suhu sintering. [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Herawaty L, Rohaeti E, Charlena, Sukaryo SG. (2014). Synthesis of hydroxyapatite nanoparticle from tutut (Bellamya javanica) shells by using precipitation method for artificial bone engineering. Journal Advanced Material Research. 896:284-287. Doi: 10.4028/www.scientific.net/AMR.896.284.

Huang YC, Chu HW. (2013). Using hydroxyapatite from fish scales to prepare chitosan/gelatin/hydroxyapatite membrane: exploring potensial for bone tissue engineering. Journal of Marine Science and Technology. 21(6): 716 - 722.

Hui P, Meena SL, Singh G, Agarawal RD, Prakash S. (2010). Synthesis of hydroxyapatite bio-ceramic powder by hydrothermal method. JMMCE. 9(8):683-692.

Jamarun N, Sari TP, Drajat S, Azharman Z, Asril A. (2015). Effect of pH variation on hydroxyapatite synthesis through sol-gel method. Research Journal of Pharmaceutical, Biological, and Chemical Science. 6(3): 1065-1069.

Kamalanathan P, Ramesh S, Bang LT, Niakan A, Tan CY, et al. (2014). Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor. Ceramic International. doi.org/10.1016/j.ceramint.2014.07.074.

Khiri MZA, Matori KA, Zainuddin N, Abdullah CAC, Alassan ZN, et al. (2016). The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitation method in various sintering temperature. Springer Plus. 5:1206. doi:10.1186/s40064-016-2824-y.

Monmaturapoj N. (2008). Nano-size hydroxyapatite powders preparation by wet chemical precipitation route. Journal of Metals, Material and Minerals. 18(1):15-20.

Muhara I, Fadli A, Akbar F. (2015). Sintesis hidroksiapatit dari kulit kerang darah dengan metode hidrotermal suhu rendah. Jom FTEKNIK. 2(1).

Murakami FS, Rogrigues PO, Campos CMT de, Silva MAS. (2007). Physicochemical study of CaCO3 from egg shell. Cienc Technol Aliment Campinas. 27(3):658-662.

Muntamah. (2011). Sintesis dan karakterisasi hidroksiapatit dari limbah cangkang kerang darah (Anadara granosa sp.) [tesis]. Bogor (ID): Institut Pertanian Bogor.

Murugan R, Ramakrishna S. (2007). Development of cell-responsive nanophase hydroxyapatite for tissue engineering. American Journal of Biochemistry and Biotechnology. 3:118-124.

Ningsih RP, Wahyuni N, Destiarti L. (2014). Sintesis hidroksiaptit dari cangkang kerang kepah (Polymesoda erosa) dengan variasi waktu pengadukan. JKK. 3(1): 22-26.

Pudjiastuti L. (2015). Sintesis hidroksiapatit dari cangkang keong sawah (Bellamya javanica) dengan metode simultan presipitasi pengadukan berganda [skripsi]. Bogor (ID): Instutit Pertanian Bogor.

Ragu A, Senthilarasan K, Sakthivel P. (2014). Synthesis and characterization of nano-hydroxyapatite with polyurethane nano composite. IJSR. 4(2):2250-3153.

Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamsidi A. (2013). Syntthesis methods for nanosized hydroxyaptite with diverse structures. Acta Biomater. 9: 7591-7621.

Santos MH, de Oliviera M, de Frietas Souza LP, Mansur HS, Vasconcelos WL. (2004). Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Materials Research. 7(4):625-630.

Shi D. (2003). Biomaterial and tissue engineering. New York: Springer.

Soido C, Vasconcellos MC, Diniz AG, Pinheiro J. (2009). An inprovement of calcium determination technique in the shell of molluscs. Brazilian Archives of Biology And Technology. 52(1): 93-98.

Sooksaen P, Jumpanoi N, Suttiphan P, Kimchaiyong E. (2010). Crystalization of nano-sized hydroxyaptite via wet chemical proses under strong alkaline conditions. Sci J UBU. 1: 20-27.

Trianita VN. (2012). Sintesis hidroksiapatit berpori dengan porogen polivinil alcohol dan pati [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Tazaki J, Murata M, Akazawa T, Yamamoto M, Ito K, et al. (2009). BMP-2 Release and Dose-Response Studies in Hydroxyapatite and β-Tricalcium Phosphate. Bio-Medical Materials and Engineering. 19:141-146. Doi: 10.3233/BME-2009-0573.

Yanhua C, Yufeng Z, Xiaogang Z, Yanfei S, Youzhong D. (2005). Solvothermal synthesis of nanocrystalline FeS2. Sci China. 48(2): 188-2009.

Zhou H, Lee J. (2011). Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7: 2769-2781.

Zyman ZZ, Rokhmistrov DV, Loza KI (2013) Determination of the Ca/P ratio in calcium phosphates during the precipitation of hydroxyapatite using X-Ray difractometry. Process and Appl Ceramic. 7: 93-95.

Downloads

Published

2023-02-28

How to Cite

Charlena, Suparto, I. H., & Laia, D. P. O. (2023). Synthesis and Characterization of Hydroxyapatite from Polymesoda placans Shell using Wet Precipitation Method. JURNAL BIOS LOGOS, 13(1), 85–96. https://doi.org/10.35799/jbl.v13i1.47454