Effectiveness of Agarwood Formation Using a Fungal Consortium on Three Stem Diameter Sizes of Aquilaria malaccensis Lamk. in Banyuwangi

Authors

  • Apra Humaera Biology Study Program and Agarwood Research Center, Faculty Mathematics and Natural Sciences, University of Mataram
  • Sentot Adi Sasmuko Rimba Oud Home Industry, Sidoarjo, Jawa Timur
  • Aida Muspiah Biology Study Program, Faculty Mathematics and Natural Sciences, University of Mataram
  • I Made Nanda Pradita Biology Study Program and Agarwood Research Center, Faculty Mathematics and Natural Sciences, University of Mataram
  • Tri Mulyaningsih Biology Study Program and Agarwood Research Center, Faculty Mathematics and Natural Sciences, University of Mataram

DOI:

https://doi.org/10.35799/jbl.v15i2.61086

Keywords:

Agarwood, inoculation, fungal consortium, Aquilaria malaccensis, Banyuwangi

Abstract

Agarwood is a wood containing fragrant resin produced as a response of tree defense against disease. One of the artificial techniques that can be used for agarwood induction is inoculation, which is a technique of inserting pathogens (inoculants) into the stem such as fungi as a disease to accelerate the stimulation of agarwood formation. This study aims to analyze the size of the stem diameter against the length of infection propagation, the thickness of aromatic resin propagation, resin color and anatomical characteristics of agarwood to see the distribution of resin in the tissue, after being induced by a fungal consortium. Induction in this study was carried out on 3 sizes of tree trunk diameters (10 cm, 15 cm, and 20 cm) with 3 repetitions. Data were analyzed using analysis of variance (ANOVA) and qualitative descriptive for resin anatomy and color. The longest propagation of aromatic resin was obtained on a stem with a diameter of 15 cm. The aromatic resin that produced the darkest color was obtained from a stem with a diameter of 10 cm. The longest infection propagation was obtained on a stem with a diameter of 20 cm.The distribution of aromatic resin in the tissue accumulates in the pith rays, interxilary phloem, trachea, and tracheids.

References

Adams, S. J., Krishnamurthy, K. V, Labs, S., & Kumar, T. S. (2016). Histochemical studies on fungal-induced agarwood. Indian Journal of Plant Sciences, 5(1), 102–110.

Akter, S., Islam, M. T., Zulkefeli, M., & Khan, S. I. (2013). Agarwood production - A multidisciplinary field to be explored in Bangladesh. International Journal of Pharmaceutical and Life Sciences, 2(1), 22–32. https://doi.org/10.3329/IJPLS.V2I1.15132

Chen, S.-T., & Rao, Y. K. (2022). An overview of agarwood, phytochemical constituents, pharmacological activities, and analyses. Traditional Medicine, 3(1). https://doi.org/10.35702/TRAD.10008

Chen, X., Liu, Y., Yang, Y., Feng, J., Liu, P., Sui, C., & Wei, J. (2018). Trunk surface agarwood-inducing technique with Rigidoporus vinctus: An efficient novel method for agarwood production. PLoS ONE, 13(6). https://doi.org/10.1371/journal.pone.0198111

Chhipa, H., & Kaushik, N. (2017). Fungal and bacterial diversity isolated from Aquilaria malaccensis tree and soil, induces agarospirol formation within 3 months after artificial infection. Frontiers in Microbiology, 8, 273540. https://doi.org/10.3389/FMICB.2017.01286/BIBTEX

Cui, J. L., Guo, S. X., Fu, S. Bin, Xiao, P. G., & Wang, M. L. (2013). Effects of inoculating fungi on agilawood formation in Aquilaria sinensis. Chinese Science Bulletin, 58(26), 3280–3287. https://doi.org/10.1007/S11434-013-5856-5/METRICS

Faizal, A., Azar, A. W. P., Turjaman, M., & Esyanti, R. R. (2020). Fusarium solani induces the formation of agarwood in Gyrinops versteegii (Gilg.) Domke branches. Symbiosis, 81(1), 15–23. https://doi.org/10.1007/S13199-020-00677-W

Jalil, A. M., Abdul-Hamid, H., Sahrim-Lias, Anwar-Uyup, M. K., Md-Tahir, P., Mohd-Razali, S., … Abiri, R. (2022). Assessment of the effects of artificial fungi inoculations on Agarwood formation and sap flow rate of Aquilaria malaccensis Lam. using Sonic Tomography (SoT) and Sap Flow Meter (SFM). Forests, 13(10), 1731. https://doi.org/10.3390/F13101731

Justin, S., Lihan, S., Elvis-Sulang, M. R., & Chiew, T. S. (2020). Formulated microbial consortium as inoculant for agarwood induction. Journal of Tropical Forest Science, 32(2), 161–169.

https://doi.org/10.26525/JTFS32.2.161

Karlinasari, L., Pratama, N. A., Noviyanti, Purwanto, Y. A., & Turjaman, M. (2021). Evaluation of agarwood (Aquilaria malaccenis) from Bintan Island based on Indonesian standard: Predicting its quality using near-infrared spectroscopy. Journal of Tropical Forest Science, 33(4), 435–443. https://doi.org/10.26525/jtfs2021.33.4.435

Kristanti, A. N., Tanjung, M., & Aminah, N. S. (2018). Review: Secondary metabolites of Aquilaria, a Thymelaeaceae genus. Mini-Reviews in Organic Chemistry, 15(1), 36–55.

https://doi.org/10.2174/1570193X14666170721143041/CITE/REFWORKS

Kuspradini, H., Rosamah, E., Sukaton, E., Arung, E. T., & Kusuma, I. W. (2016). Buku pengetahuan jenis getah, gum-lateks-resin. Samarinda: Mulawarman University press.

Li, P., Lu, Y. J., Chen, H., & Day, B. (2020). The lifecycle of the plant immune system. Critical Reviews in Plant Sciences, 39(1), 72. https://doi.org/10.1080/07352689.2020.1757829

Lisdayani, L. (Lisdayani), Anna, N. (Nelly), & Siregar, E. B. (Edy). (2015). Reisolasi dan identifikasi fungi pada batang Gaharu (Aquilaria Malaccencis Lamk.) hasil inokulasi. Peronema Forestry Science Journal, 4(3), 283–287.

Liu, P., Zhang, X., Yang, Y., Sui, C., Xu, Y., & Wei, J. (2019). Interxylary phloem and xylem rays are the structural foundation of agarwood resin formation in the stems of Aquilaria sinensis. Trees - Structure and Function. https://doi.org/10.1007/s00468-018-1799-4

Liu, Y., Qiao, M., Fu, Y., Wei, P., Li, Y., & Liu, Z. (2022). Tissue structure changes of Aquilaria sinensis xylem after fungus induction. Forests, 13(1), 43. https://doi.org/10.3390/F13010043

Lorrai, R., & Ferrari, S. (2021). Host cell wall damage during pathogen infection: mechanisms of perception and role in plant-pathogen interactions. Plants, 10(2), 399. https://doi.org/10.3390/PLANTS10020399

Maffei, M., & Bossi, S. (2006). Electrophysiology and plant responses to biotic stress. Plant Electrophysiology: Theory and Methods, 461–481. https://doi.org/10.1007/978-3-540-37843-3_20

Mohamed, R., Jong, P. L., & Zali, M. S. (2010). Fungal diversity in wounded stems of Aquilaria malaccensis. Fungal Diversity, 43, 67–74. https://doi.org/10.1007/S13225-010-0039-Z

Mulyaningsih, T, & Sumarjan. (2002). Formation interxylary phoem and aromatic resin in Gyrinops versteegii (Thymelaeaceae). IAWA Journal, 23(24), 472–473.

Mulyaningsih, T., Marsono, D., & Yamada, I. (2014). Selection of Superior Breeding Infraspecies Gaharu of Gyrinops versteegii (Gilg) Domke. Journal of Agricultural Science and Technology B, 4, 485–492.

Naziz, P. S., Das, R., & Sen, S. (2019). The scent of stress: Evidence from the unique fragrance of agarwood. Frontiers in Plant Science, 10, 440549. https://doi.org/10.3389/FPLS.2019.00840/BIBTEX

Prastyaningsih, S. R., Ervayenri, E., & Azwin, A. (2015). Potensi pohon penghasil gaharu budidaya di Kabupaten Kampar Provinsi Riau. Wahana Forestra: Jurnal Kehutanan, 10(2), 88–100.

https://doi.org/10.31849/FORESTRA.V10I2.232

Rachmawaty, R., Ashar, A., Ali, A., Pagarra, H., & Hiola, S. F. (2021). Pembentukan gaharu pada pohon Aquilaria malaccensis Lamk., menggunakan inokulum Fusarium sp. Sainsmat : Jurnal Ilmiah Ilmu Pengetahuan Alam, 10(2), 178.

https://doi.org/10.35580/sainsmat102262252021

Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusidó, R. M., & Palazon, J. (2016). Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, 21(2), 182.

https://doi.org/10.3390/MOLECULES21020182

Ramli, A. N. M., Yusof, S., Bhuyar, P., Aminan, A. W., Tajuddin, S. N., & Hamid, H. A. (2022). Production of volatile compounds by a variety of fungi in artificially inoculated and naturally infected Aquilaria malaccensis. Current Microbiology, 79(5), 1–14. https://doi.org/10.1007/S00284-022-02840-6/METRICS

Rasool, S., & Mohamed, R. (2016). Understanding agarwood formation and its challenges, 39–56. https://doi.org/10.1007/978-981-10-0833-7_3

Santoso, E., Agustini, L., Sitepu, I. R., Maman Turjaman, A., & Litbang Hutan dan Konservasi Alam Jl Gunung, P. (2007). Efektivitas pembentukan gaharu dan komposisi senyawa resin gaharu pada Aquilaria Spp. Jurnal Penelitian Sosial Dan Ekonomi Kehutanan, 4(6), 543–551.

https://doi.org/10.20886/JPHKA.2007.4.6.543-551

Schultz, J. C., Appel, H. M., Ferrieri, A. P., & Arnold, T. M. (2013). Flexible resource allocation during plant defense responses. Frontiers in Plant Science, 4(AUG), 56752. https://doi.org/10.3389/FPLS.2013.00324/PDF

selno, S., Zakiah, Z., & Kurniatuhadi, R. (2021). Kualitas gaharu Aquilaria sp. dengan pemberian bioinokulan ferementasi batang Pisang yang terkena penyakit layu Fusarium. Jurnal Bios Logos, 11(2), 94–101. https://doi.org/10.35799/JBL.11.2.2021.32551

Suharti, S. (Sri), Pratiwi, P. (Pratiwi), Santosa, E. (Erdy), & Turjaman, M. (Maman). (2011). Feasibility study of business in Agarwood inoculation at different stem diameters and inoculation periods. Indonesian Journal of Forestry Research, 8(2), 114–129.

https://doi.org/10.20886/IJFR.2011.8.2.114-129

Tabata, Y., Widjaja, E., Mulyaningsih, T., Parman, I., Wiriadinata, H., & Mandang, Y. I. (2003). Structural Survey and Artificial Induction of Aloeswood. Wood Research: Bullentin of the Wood Research Institute Kyoto University, 90(January), 11–12.

Tin, T. (2023). Agarwood price newest updated August 15, 2023.

Try, F. Y. L., Muin, A., & Idham, M. (2017). Pengaruh diameter pohon dan jarak lubang inokulasi terhadap pembentukan gubal gaharu pada tanaman Aquilaria malaccensis Lamk. Jurnal Hutan Lestari, 5(2), 200–208.

https://doi.org/10.26418/jhl.v5i2.19089

Turjaman, M., Hidayat, A., & Santoso, E. (2016). Development of Agarwood induction technology using endophytic fungi, 57–71.

https://doi.org/10.1007/978-981-10-0833-7_4

Wangiyana, I. G. A. S., Wanitaningsih, S. K., & Anggadhania, L. (2020). Pelatihan teknologi Bio-induksi untuk petani Gaharu di Desa Pejaring, Kabupaten Lombok Timur. Agrokreatif: Jurnal Ilmiah Pengabdian Kepada Masyarakat, 6(1), 36–44. https://doi.org/10.29244/AGROKREATIF.6.1.36-44

Wulandari, E. (2009). Efektivitas Acremonium sp. dan Fusarium sp. sebagai Penginduksi Ganda Terhadap Pembentukan Gaharu Pada Pohon Aquilaria macrocarpa. IPB University.

Xie, Z., Botanical, L., Siqing, G., Lushan, F., Garden, B., Xu, J., … Cheng, C. (2024). Origin and diversification of Aquilaria (Thymelaeaceae): inferences from a phylogenetic study based on matK sequences.

https://doi.org/10.21203/RS.3.RS-4120659/V1

Zhang, Z., Wei, J., Han, X., Liang, L., Yang, Y., Meng, H., … Gao, Z. (2014). The sesquiterpene biosynthesis and vessel-occlusion formation in stems of Aquilaria sinensis (lour.) Gilg trees induced by wounding treatments without variation of microbial communities. International Journal of Molecular, 15(12), 23589–23603. https://doi.org/10.3390/IJMS151223589

Zhao, W., Song, X., Zhou, Z., Liu, G., Zhang, Q., & Pang, S. (2024). Effects of different levels of physical damage combined with fungal induction on Agarwood formation. Forests, 15(1), 168.

https://doi.org/10.3390/F15010168

Downloads

Published

2025-09-22

How to Cite

Humaera, A., Sasmuko, S. A., Muspiah, A., Pradita, I. M. N., & Mulyaningsih, T. (2025). Effectiveness of Agarwood Formation Using a Fungal Consortium on Three Stem Diameter Sizes of Aquilaria malaccensis Lamk. in Banyuwangi. JURNAL BIOS LOGOS, 15(2), 263–274. https://doi.org/10.35799/jbl.v15i2.61086

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.