In Silico Study of Quercetin and Its Derivatives as Potential Antituberculosis

Authors

  • Angelina Stevany Regina Masengi Universitas Sam Ratulangi
  • Greachylia Chelzy Universitas Sam Ratulangi
  • Jimmy Posangi Universitas Sam Ratulangi
  • Trina Ekawati Tallei Universitas Sam Ratulangi
  • Fatimawali Universitas Sam Ratulangi
  • Christi Diana Mambo Universitas Sam Ratulangi
  • Dian Augina Rintibulawan Rambulangi Universitas Sam Ratulangi

DOI:

https://doi.org/10.35799/jbl.v15i1.60150

Keywords:

antituberculosis, quercetin and its derivates, InhA, ADMET, molecular docking

Abstract

Tuberculosis (TB) remains the second leading cause of death in the world, with the resistance of Mycobacterium tuberculosis to first-line drugs, such as isoniazid (INH), contributing to the emergence of multi-drug resistant TB (MDR-TB). This study aims to evaluate the potential of quercetin and its derivatives as InhA enzyme inhibitors through an in silico approach to offer innovative therapeutic alternatives to improve the effectiveness of TB treatment. The analysis includes physicochemical properties, ADMET profiles, molecular interactions, and affinity of compounds to the InhA enzyme as an antituberculosis target. The study workflow included ligand and receptor preparation, prediction of biological activity, physicochemical and ADMET analysis, docking validation, molecular docking, and visualization of molecular interactions. Molecular docking was performed using Gnina software, showing that rutin has the lowest binding energy (ΔG) of -12.22 kcal/mol, indicating strong interaction affinity. In addition, ADMET and toxicity analysis showed good pharmacokinetic potential for the test compounds Docking validation confirmed the reliability of the employed methodology, further supporting the potential of quercetin and its derivatives as antituberculosis candidates.  However, although quercetin and its derivatives showed promising biological activity, the ADMET profile results were variable, requiring further optimization to develop effective and safe TB therapies.

References

Agu, P. C., Afiukwa, C. A., Orji, O. U., Ezeh, E. M., Ofoke, I. H., Ogbu, C. O., … Aja, P. M. (2023). Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports, 1–18. https://doi.org/10.1038/s41598-023-40160-2

Arwansyah, A., Ambarsari, L., & Sumaryada, T. I. (2015). Simulasi Docking Senyawa Kurkumin dan Analognya Sebagai Inhibitor Reseptor Androgen pada Kanker Prostat. Current Biochemistry, 1(1), 11–19. https://doi.org/10.29244/cb.1.1.11-19

Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3). https://doi.org/10.1126/sciadv.1501240

Dasoondi, R. S., Blundell, T. L., & Pandurangan, A. P. (2023). In silico analyses of isoniazid and streptomycin resistance-associated mutations in Mycobacterium tuberculosis. Computational and Structural Biotechnology Journal, 21, 1874–1884. https://doi.org/10.1016/j.csbj.2023.02.035

Fadhil Pratama, M. R., Poerwono, H., & Siswodihardjo, S. (2021). Introducing a two‐dimensional graph of docking score difference vs. similarity of ligand‐receptor interactions. Indonesian Journal of Biotechnology, 26(1), 54–60. https://doi.org/10.22146/IJBIOTECH.62194

Farjallah, A., Chiarelli, L. R., Forbak, M., Degiacomi, G., Danel, M., Goncalves, F., … Chassaing, S. (2021). A Coumarin-Based Analogue of Thiacetazone as Dual Covalent Inhibitor and Potential Fluorescent Label of HadA in Mycobacterium tuberculosis. ACS Infectious Diseases, 7(3), 552–565. https://doi.org/10.1021/acsinfecdis.0c00325

Nguyen, T. L. A., & Bhattacharya, D. (2022). Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules, 27(8). https://doi.org/10.3390/molecules27082494

O’Donnell, M. (2018). Isoniazid monoresistance: A precursor to multidrug-resistant tuberculosis? Annals of the American Thoracic Society, 15(3), 306–307. https://doi.org/10.1513/AnnalsATS.201711-885ED

Prasetiawati, R., Suherman, M., Permana, B., & Rahmawati, R. (2021). Molecular Docking Study of Anthocyanidin Compounds Against Epidermal Growth Factor Receptor (EGFR) as Anti-Lung Cancer. Indonesian Journal of Pharmaceutical Science and Technology, 8(1), 8. https://doi.org/10.24198/ijpst.v8i1.29872

Qin, L., Huang, C. H., Xu, D., Xie, L. N., Shao, J., Mao, L., … Zhu, B. Z. (2019). Molecular mechanism for the activation of the anti-tuberculosis drug isoniazid by Mn(III): First detection and unequivocal identification of the critical N-centered isoniazidyl radical and its exact location. Free Radical Biology and Medicine, 143(July), 232–239. https://doi.org/10.1016/j.freeradbiomed.2019.07.012

Sasikumar, K., Ghosh, A. R., & Dusthackeer, A. (2018). Antimycobacterial potentials of quercetin and rutin against Mycobacterium tuberculosis H37Rv. 3 Biotech, 8(10), 1–6. https://doi.org/10.1007/s13205-018-1450-5

Seidel, T., Wieder, O., Garon, A., & Langer, T. (2020). Applications of the Pharmacophore Concept in Natural Product inspired Drug Design. Molecular Informatics, 39(11), 1–11. https://doi.org/10.1002/minf.202000059

Stagg, H. R., Lipman, M. C., McHugh, T. D., & Jenkins, H. E. (2017). Isoniazid-resistant tuberculosis: A cause for concern? International Journal of Tuberculosis and Lung Disease, 21(2), 129–139. https://doi.org/10.5588/ijtld.16.0716

Swain, S. S., Rout, S. S., Sahoo, A., Oyedemi, S. O., & Hussain, T. (2022). Antituberculosis, antioxidant and cytotoxicity profiles of quercetin: a systematic and cost-effective in silico and in vitro approach. Nat Prod Res, 36(18), 4763–4767. Retrieved from https://doi.org/10.1080/14786419.2021.2008387

Tallei, T. E., Fatimawali, Adam, A. A., Ekatanti, D., Celik, I., Fatriani, R., … Idroes, R. (2024). Molecular insights into the anti-inflammatory activity of fermented pineapple juice using multimodal computational studies. Arch Pharm (Weinheim), 357(1). Retrieved from https://doi.org/10.1002/ardp.202300422

Tsantili-Kakoulidou, A., & Demopoulos, V. J. (2021). Drug-like Properties and Fraction Lipophilicity Index as a combined metric. ADMET and DMPK, 9(3), 177–190. https://doi.org/10.5599/admet.1022

Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., … Jiang, H. (2015). In silico ADME/T modelling for rational drug design. Quarterly Reviews of Biophysics, 48(4), 488–515. https://doi.org/10.1017/S0033583515000190

World Health Organization. (2022). Global Tuberculosis Report 2022. 1-68 p.

World Health Organization. (2024). Tuberculosis : Multidrug- resistant ( MDR-TB ) or rifampicin-resistant TB ( RR- TB ).

Downloads

Published

2025-03-30

How to Cite

Masengi, A. S. R., Greachylia Chelzy, Posangi, J., Tallei, T. E., Fatimawali, Mambo, C. D., & Rambulangi, D. A. R. (2025). In Silico Study of Quercetin and Its Derivatives as Potential Antituberculosis. JURNAL BIOS LOGOS, 15(1), 33–43. https://doi.org/10.35799/jbl.v15i1.60150

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.