In Silico Study Of Natural Bioactive Compounds As Potential Anti-Mpox Through Molecular Docking On D13 Protein

Authors

  • Anastasia Maria Angelica Montolalu Medical Education Study Program, Faculty of Medicine, Sam Ratulangi University, Manado
  • Angelina Stevany Regina Masengi Department of Pharmacology and Therapeutics, Faculty of Medicine, Sam Ratulangi University, Manado
  • Jimmy Posangi Department of Pharmacology and Therapeutics, Faculty of Medicine, Sam Ratulangi University, Manado
  • Trina Ekawati Tallei Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado
  • Fatimawali Medical Education Study Program, Faculty of Medicine, Sam Ratulangi University, Manado
  • Christi Diana Mambo Department of Pharmacology and Therapeutics, Faculty of Medicine, Sam Ratulangi University, Manado
  • Dian Augina Rintibulawan Rambulangi Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado

DOI:

https://doi.org/10.35799/jbl.v15i1.60116

Keywords:

Mpox, bioactive compounds, in silico, D13 protein, molecular docking

Abstract

Mpox is a zoonotic disease caused by Monkeypox virus (MPXV), with a surge in cases posing a major challenge due to the unavailability of specific antivirals. Indonesia's biodiversity offers great opportunities for the exploration of bioactive compounds from natural materials as therapeutic alternatives, especially by targeting the D13 protein, which is an essential structural protein in MPXV. This study aims to evaluate the interaction and affinity of molecular tethering of bioactive compounds to D13 protein and analyse the physicochemical, pharmacokinetic and toxicity profiles of the compounds. The research was conducted using molecular tethering method using Gnina software on Google Colab platform. Antiviral activity prediction was performed using PASS Online, followed by Lipinski's Rule of Five (RO5) evaluation and pharmacokinetic and toxicity analysis using SwissADME and pkCSM. The results showed that the tested bioactive compounds had good potential antiviral activity and fulfilled the RO5 criteria. Pharmacokinetic and toxicity analyses indicated good pharmacokinetic profiles but poor metabolic profiles, with predicted low toxicity levels, supporting the feasibility of these compounds to be further developed as therapeutic candidates. In addition, the bioactive compound showed the ability to interact with D13 protein with the best affinity tethering value of myricetin with a free binding energy (ΔG) value of -8.37 kcal/mol, making it a potential candidate as an antiviral for Mpox.

References

Chen, X., Li, H., Tian, L., Li, Q., Luo, J., & Zhang, Y. (2020). Analysis of the Physicochemical Properties of Acaricides Based on Lipinski’s Rule of Five. Journal of Computational Biology, 27, 1397–1406.

Choudhury, A., Das, N. C., Patra, R., Bhattacharya, M., Ghosh, P., Patra, B. C., & Mukherjee, S. (2021). Exploring the Binding Efficacy of Ivermectin Against the Key Proteins of SARS-CoV-2 Pathogenesis: An in silico Approach. Future Virology, 16, 277–291.

Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chemistry of Heterocyclic Compounds, 50, 444–457.

Gottschalk, H. C., Altnöder, J., Heger, M., & Suhm, M. A. (2016). Control over the Hydrogen-Bond Docking Site in Anisole by Ring Methylation. Angewandte Chemie International Edition, 55, 1921–1924.

Gulati, P., Chadha, J., Harjai, K., & Singh, S. (2023). Targeting envelope proteins of poxviruses to repurpose phytochemicals against monkeypox: An in silico investigation. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1073419

Isidro, J., Borges, V., Pinto, M., Sobral, D., Santos, J. D., Nunes, A., … Gomes, J. P. (2022). Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nature Medicine, 28, 1569–1572.

Kemkes.go.id. (2022). Kasus Monkeypox Pertama di Indonesia Terkonfirmasi.

Kharwar, R., Bhatt, M., Patel, K., Patel, S., & Daxini, N. (2023). A computational approach to identify natural putative inhibitors to combat monkeypox. In Nanotechnology and in Silico Tools: Natural Remedies and Drug Discovery (pp. 285–308). Elsevier.

Korespondensi, A., & Kuncoro, C. S. (n.d.). Monkeypox: Manifestasi dan Diagnosis.

Lam, H. Y. I., Guan, J. S., & Mu, Y. (2022). In Silico Repurposed Drugs against Monkeypox Virus. Molecules, 27. https://doi.org/10.3390/molecules27165277

Lim, S. Y. M., Chieng, J. Y., & Pan, Y. (2021). Recent insights on anti-dengue virus (DENV) medicinal plants: Review on in vitro , in vivo and in silico discoveries. All Life, 14, 1–33.

Maharani, D. S., Redjeki, S. G., Emamia, E. S., Aulia, A. P., Nurviana, D., Aulifa, D. L., … Karim, B. K. (2024). Identifikasi Senyawa Aktif Rimpang Kunyit (Curcuma longa L.) sebagai Kandidat Antikanker Melalui Studi In Silico terhadap Reseptor Lymphocyte-Specific Protein Tyrosine Kinase. 12.

McNutt, A. T., Francoeur, P., Aggarwal, R., Masuda, T., Meli, R., Ragoza, M., … Koes, D. R. (2021). GNINA 1.0: Molecular docking with deep learning. Journal of Cheminformatics, 13, 43.

Meiyanto, E. (2012). DOCKING KURKUMIN DAN SENYAWA ANALOGNYA PADA RESEPTOR PROGESTERON: STUDI INTERAKSINYA SEBAGAI Selective Progesterone Receptor Modulators (SPRMs). Pharmacon: Jurnal Farmasi Indonesia, 13, 55–60.

Muhammed, M. T., & Aki-Yalcin, E. (2024). Molecular Docking: Principles, Advances, and Its Applications in DrugDiscovery. Letters in Drug Design & Discovery, 21, 480–495.

Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58, 4066–4072.

Ratu, B. D. P. M., Bodhi, W., Budiarso, F., Kepel, B. J., Fatimawali, ., & Manampiring, A. (2021). Molecular Docking Senyawa Gingerol dan Zingiberol pada Tanaman Jahe sebagai Penanganan COVID-19. Jurnal e-Biomedik, 9. https://doi.org/10.35790/ebm.v9i1.32361

Sun, Y., Nie, W., Tian, D., & Ye, Q. (2024). Human monkeypox virus: Epidemiologic review and research progress in diagnosis and treatment. Journal of Clinical Virology, 171. https://doi.org/10.1016/j.jcv.2024.105662

Tallei, T. E., Fatimawali, Adam, A. A., Ekatanti, D., Celik, I., Fatriani, R., … Idroes, R. (2024). Molecular insights into the anti‐inflammatory activity of fermented pineapple juice using multimodal computational studies. Archiv Der Pharmazie, 357, 2300422.

WHO. (2024). 2022-24 Mpox Outbreak: Global Trends. Geneva: World Health Organization, 2024.

WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification, 2019 Edition (2nd ed). (2020). Geneva: World Health Organization.

Xiang, Y., & White, A. (2022). Monkeypox virus emerges from the shadow of its more infamous cousin: Family biology matters. Emerging Microbes and Infections, 11, 1768–1777.

Downloads

Published

2025-03-30

How to Cite

Montolalu, A. M. A., Masengi, A. S. R., Posangi, J., Tallei, T. E., Fatimawali, Mambo, C. D., & Rambulangi, D. A. R. (2025). In Silico Study Of Natural Bioactive Compounds As Potential Anti-Mpox Through Molecular Docking On D13 Protein. JURNAL BIOS LOGOS, 15(1), 1–10. https://doi.org/10.35799/jbl.v15i1.60116

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.